
DOI: 10.1111/cgf.13764 COMPUTER GRAPHICS forum
Volume 39 (2020), number 1 pp. 244–259

Efficient Homology-Preserving Simplification of High-Dimensional
Simplicial Shapes

Riccardo Fellegara1, Federico Iuricich2, Leila De Floriani1 and Ulderico Fugacci3

1University of Maryland, College Park, MD, USA
felle@umd.edu, deflo@umiacs.umd.edu

2Clemson University, Clemson, SC, USA
fiurici@clemson.edu

3Graz University of Technology, Graz, Austria
fugacci@tugraz.at

Abstract
Simplicial complexes are widely used to discretize shapes. In low dimensions, a 3D shape is represented by discretizing its
boundary surface, encoded as a triangle mesh, or by discretizing the enclosed volume, encoded as a tetrahedral mesh. High-
dimensional simplicial complexes have recently found their application in topological data analysis. Topological data analysis
aims at studying a point cloud P, possibly embedded in a high-dimensional metric space, by investigating the topological
characteristics of the simplicial complexes built on P. Analysing such complexes is not feasible due to their size and dimensions.
To this aim, the idea of simplifying a complex while preserving its topological features has been proposed in the literature. Here,
we consider the problem of efficiently simplifying simplicial complexes in arbitrary dimensions. We provide a new definition
for the edge contraction operator, based on a top-based data structure, with the objective of preserving structural aspects of
a simplicial shape (i.e., its homology), and a new algorithm for verifying the link condition on a top-based representation.
We implement the simplification algorithm obtained by coupling the new edge contraction and the link condition on a specific
top-based data structure, that we use to demonstrate the scalability of our approach.

Keywords: simplicial shapes, edge contraction, geometric modelling, mesh processing, homology-preserving simplification,
topological data analysis

ACM CCS: I.3.5 [Computer Graphics]: • Computational Geometry and Object Modelling–Hierarchy and geometric
transformations

1. Introduction

Simplicial complexes are the most common tool for encoding a geo-
metric shape. In particular, triangle and tetrahedral meshes are often
used for discretizing 3D shapes and for studying their geometric
properties. In topological data analysis, where the aim is to extract
descriptors from data in the form of topological invariants such
as homology or persistent homology [ELZ02], high-dimensional
simplicial complexes are a key discretization tool.

Such complexes are computed from point data or complex net-
works, including sensor networks [dSG07, SHPW17], brain net-
works [DMFC12, CRS15], social networks [BG14] and others
[DPS*13]. Examples of high-dimensional simplicial complexes that

can be computed on these type of data are alpha shapes [EM94],
tidy sets [Zom10b] or Vietoris-Rips (VR) complexes [Zom10a].

In such applications, simplicial complexes are not limited to tri-
angle or tetrahedral meshes, but they are defined as collections of
p-dimensional hyper-tetrahedra, simply called p-simplices. With
the growing of the dimension p of the simplices, the number of
simplices forming a simplicial complex grows exponentially. This,
combined with the native huge size of real-world datasets, requires
new scalable and efficient approaches capable of dealing with the
challenge posed by big data.

Reducing the size of a simplicial complex, while preserving its
geometric properties, is a standard approach in mesh processing.

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

244

R. Fellegara et al. / Efficient Simplification of Simplicial Shapes 245

Edge contraction has been the most common operator for simplify-
ing simplicial shapes since its first application in computer graph-
ics and visualization [PH97, PS97, GGK02, CDFM*04, DFKP05,
WRK*10, ZQC*14]. More recently, a new class of algorithms ap-
peared in topological data analysis that aims at simplifying a mesh
via edge contraction, while preserving some structural properties,
like its homology [ALS11] or its persistent homology [ID17, DS18].

Our aim here is to design and develop an efficient approach
for simplifying a simplicial complex in arbitrary dimensions while
preserving its homology. Roughly speaking, the homology of a
simplicial shape counts the presence of n-dimensional ‘holes’, like
connected components, loops, voids, and so on. Edge contraction
alone does not preserve the homology of a shape. However, by
means of the link condition [DEGN99, ALS11], one can check if
a certain edge contraction would modify the homology and prevent
it. We propose an efficient dimension-independent and homology-
preserving simplification algorithm for simplicial complexes, based
on edge contraction, that scales well with both the size and the
dimension of the complex. Our approach makes use of a class of
data structures for simplicial complexes, that we call top-based data
structures. A top-based representation of a simplicial complex en-
codes only its vertices and top simplices, i.e., the simplices which
do not bound any other simplex in the complex, thereby providing
scalability with the dimension and the size of the complex. At the
basis of our simplification approach, there is also a new link condi-
tion that we introduce for a top-based representation, and we prove
to be equivalent to the classical one [DEGN99, ALS11].

The major contributions of this paper are:

(1) the definition of a dimension-independent homology-
preserving edge contraction algorithm on a top-based rep-
resentation, and a proof of its correctness;

(2) the definition of a new link condition for a top-based repre-
sentation and a proof of its equivalence to the link condition
in [ALS11];

(3) the design and implementation of an efficient algorithm for
simplifying a simplicial complex based on a very compact
top-based data structure, the Stellar tree [FWD17];

(4) an extensive comparison with respect to a data structure for
simplicial complexes designed for performing edge contrac-
tions, the Skeleton-Blocker data structure [ALS11] for both
high-dimensional complexes, and triangulated and tetrahe-
dralized shapes.

The remainder of this paper is organized as follows. In Section 2,
we review some background notions on simplicial complexes, on
simplicial homology, and on homology-preserving edge contrac-
tion. In Section 3, we discuss related work on data structures for sim-
plicial complexes and on edge contraction. In Section 4, we define
top-based edge contraction, which is an edge contraction working
on a top-based representation of a simplicial complex. In Section 5,
we introduce a new way for checking the link condition, that we
call the top-based link condition, and we describe an algorithm for
performing homology-preserving edge contraction on a top-based
representation. In Section 6, we briefly review the top-based data
structure used in our work, the Stellar tree, and we describe the
homology-preserving simplification algorithm that we have devel-
oped based on it. Experimental results and comparisons with a

state-of-the-art data structure are presented in Section 7, and con-
cluding remarks are drawn in Section 8.

2. Background Notions

In this section, we review the definition of simplicial complex, and
some notions on simplicial homology. We then review the edge
contraction operator, and the so-called link condition, a condition
ensuring that an edge contraction is homology-preserving.

2.1. Simplicial complexes

A p-simplex σ is the convex hull of p + 1 affinely independent
points in the Euclidean space. For instance, a 0-simplex is a single
point, a 1-simplex an edge, a 2-simplex a triangle, and a 3-simplex
a tetrahedron. We denote the p-simplex spanned by the vertices
v0, v1, . . . , vp as σ = {v0, v1, . . . , vp}. In the following, with a small
abuse of notation, we denote as v the simplex {v} spanned by a single
vertex v, whenever no ambiguity arises. In a p-simplex σ , p is called
the dimension of σ . Any simplex σ , which is the convex hull of a
non-empty subset of the points generating a simplex τ , is a face of
τ . Conversely, τ is a coface of σ . A simplex σ , which is only a
coface of itself, is a top simplex (or facet).

A simplicial complex � is a finite set of simplices, such that:

� each face of a simplex in � belongs to �;
� for each pair of simplices σ and τ , either σ ∩ τ = ∅ or σ ∩ τ is

a face of both.

If d is the maximum dimension of all the simplices in �,
we say that � is a simplicial d-complex. Given a simplex σ ∈ �,
the boundary of σ , denoted as Bd(σ), is the set of faces of σ , while
the star, or coboundary, of σ , denoted as St(σ), is the set of co-
faces of σ . The immediate boundary of a p-simplex σ is formed
by its (p − 1)-faces, while its immediate coboundary is formed by
its (p + 1)-cofaces. The link of a simplex σ ∈ � is the set of faces
of the simplices in St(σ) that do not intersect σ and is denoted as
Lk(σ) (see Figure 1).

VR-complexes [Hau94, Zom10a] are simplicial complexes widely
used for representing the shape of a point data embedded in the Eu-
clidean space. They are defined in terms of a neighbourhood graph
for a set V of points. Given a threshold value ω, the neighbourhood
graph defined by set V is the graph with vertex set V , in which there
exists an edge for each pair of vertices in V having a distance less or
equal to ω. The VR-complex is the flag complex of the neighbour-
hood graph. Recall that the flag complex of a graph G = (V,E) is
the simplicial complex whose simplices coincide with the maximal
cliques of G. Note that the definition of flag complex holds in gen-
eral for abstract simplicial complexes, i.e., simplicial complexes not
embedded in the Euclidean space.

2.2. Simplicial homology

Simplicial homology is a powerful tool for shape analysis, which
provides invariants for shape description and characterization. Given
a simplicial complex �, it is possible to define the chain complex
associated with �, C∗(�) := (Cp(�), ∂p)p∈N. Cp(�) is the free

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

246 R. Fellegara et al. / Efficient Simplification of Simplicial Shapes

Figure 1: An example of a manifold simplicial 2-complex (also called a triangle mesh). The star of a vertex St(ν) consists of the vertex ν

itself and of the 1-simplices (edges) and the 2-simplices (triangles) incident in it. The star of an edge St(ε) consists of the edge ε itself and
its incident 2-simplices (triangles). The link of a vertex Lk(ν) consists of the faces of the triangles and of the edges in St(ν) which are not
incident into ν. Similarly, the link of an edge Lk(ε) consists two vertices, one for each incident triangle.

Figure 2: Edge contraction of ε = {ν1, ν2} on a triangle mesh. All
edges and triangles incident in ν1 are redirected to ν2 with the
exception of the two triangles incident in ε (dark grey triangles)
which are removed from the mesh.

Abelian group generated by the p-simplices of simplicial com-
plex �, and ∂p : Cp(�) → Cp−1(�) is a homomorphism, called
a boundary map, which encodes the boundary relations between
p-simplices and (p − 1)-simplices of � such that ∂2 = 0. We de-
note as Zp(�) := ker ∂p the group of the p-cycles of �, and as
Bp(�) := Im∂p+1 the group of the p-boundaries of �. Then, the
p-th homology group of � is defined as

Hp(�) := Hp(C∗(�)) = Zp(�)

Bp(�)
.

Intuitively, homology groups reveal the presence of holes in a shape.
The non-null elements of each homology group are cycles, which
do not represent the boundary of any collection of simplices of �.
The rank βp of the p-th homology group of a simplicial complex
� is called the p-th Betti number of �. Specifically, β0 counts the
number of connected components of �, β1 the number of its tunnels
and holes, and β2 the number of its voids.

2.3. Homology-preserving edge contraction

We consider a simplicial d-complex �, and we denote as �V the
set of its vertices. The contraction of an edge ε = {ν1, ν2} of �

collapses vertex ν1 into vertex ν2, thus eliminating both edge ε and
vertex ν1. We can define an edge contraction by defining first a map
μV on the set of vertices �V as:

Figure 3: The edge contraction applied to ε = {ν1, ν2} in (a) is
homology-preserving: the intersection of Lk(ν1) and Lk(ν2), the
two vertices ν3 and ν4, coincides with Lk(ε). The edge contraction
in (b) is not homology-preserving and it does not satisfy the link
condition: the intersection of Lk(ν1) and Lk(ν2) consists of the two
vertices ν3 and ν4, but the link of ε contains only vertex ν3.

μV (ν) :=
{

ν2 if ν = ν1

ν otherwise
.

Thus, the edge contraction of ε = {ν1, ν2} is the map μ

on � induced by vertex map μV : for each simplex σ =
{u0, u1, . . . , up}, where ui ∈ �V for i = 0, 1, . . . , p, μ(σ) =
{μV (u0), μV (u1), . . . , μV (up)}. The complex obtained from � by
applying map μ is denoted as μ(�). Figure 2 shows an example of
an edge contraction.

The simplification of a simplicial complex � through edge con-
traction can possibly modify the homology of �. The link con-
dition, introduced in [DEGN99] for manifold simplicial 2- and
3-complexes, and extended in [ALS11] to arbitrary simplicial com-
plexes, provides a test for verifying if an edge contraction preserves
the homology of the complex.

An edge ε = {ν1, ν2} ∈ � is said to satisfy the link condition if
and only if

Lk(ν1) ∩ Lk(ν2) ⊆ Lk(ε). (1)

Since the opposite inclusion is always satisfied, the link condition is
often expressed in the literature as Lk(ν1) ∩ Lk(ν2) = Lk(ε). If an

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

R. Fellegara et al. / Efficient Simplification of Simplicial Shapes 247

edge ε satisfies the link condition, then the edge contraction applied
to ε preserves the homology of �. Notice that the opposite is not
true. Figure 3(a) shows an example of an edge that satisfies the link
condition, and Figure 3(b) shows one that does not.

Since the size of a simplicial complex increases exponentially
with its dimension [Ede87], checking the link condition is compu-
tationally expensive on high-dimensional complexes. For this rea-
son, a weaker condition, called the p-link condition (or the weak link
condition), has been introduced in [DHKS13]. An edge ε = {ν1, ν2}
satisfies the p-link condition if and only if every (p − 1)-simplex
in Lk(ν1) ∩ Lk(ν2) is also in Lk(ε). Thus, the p-link condition pro-
vides an incremental test for the link condition. Note that an edge
ε = {ν1, ν2} satisfies the link condition if and only if it satisfies the
p-link condition for all 1 ≤ p ≤ d .

3. Related Work

Several data structures have been proposed in the literature for
encoding a simplicial complex in low dimensions, especially for
manifold simplicial 2-complexes (triangle meshes), and mani-
fold simplicial 3-complexes (tetrahedral meshes) [DFH05, GR09,
GR10, GLLR11]. However, only few existing data structures are
dimension-independent. We can classify dimension-independent
data structures as simplex-based and top-based, depending on
whether they encode all the simplices in the complex, or only its
vertices and top simplices.

The most general simplex-based data structure is the Incidence
Graph (IG) [Ede87], which encodes the Hasse diagram of a com-
plex, and can represent general cell complexes. The IG can be
viewed as a graph G = (N, A), in which the nodes represent the
simplices of �, and the (undirected) arcs connect pairs of sim-
plices of � of consecutive dimension, which are in the immediate
boundary or coboundary of each other. A less verbose data struc-
ture with the same representation power is the Incidence Simplicial
(IS) data structure [DHPC10], which also encodes all simplices of
�. For each p-simplex σ ∈ �, the IS data structure encodes its
(p − 1)-faces, as in the IG, but, instead of storing all the (p + 1)-
simplices in the star of σ , the IS stores only one (p + 1)-simplex
for each connected component in the link of σ . It has been shown
in [DHPC10] that the IS is definitely more compact than the IG
in low dimensions, but the gap is reduced when working in higher
dimensions.

The Simplex Tree data structure [BM14] encodes all the simplices
of a complex in a trie. It is a specific spanning tree of the Hasse
diagram in which only the arcs following the lexicographic order of
the vertices are encoded. In addition, a linked circular list connects
nodes at the same depth, having the same last vertex. The Simplex
Tree has been defined for efficient extraction of boundary rela-
tions, as required in performing homology computations [ELZ02].
In [FIDF19], it has been shown that the Simplex Tree is generally
five times more compact than the IG. Still, since it encodes all the
simplices of the simplicial complex, the Simplex Tree also suffers
from scalability issues.

Top-based data structures are a more compact and scalable alter-
native. The size of a simplicial complex, i.e., the number of its sim-

plices, increases with its dimension, while the number of its vertices
and that of its top simplices do not. Top-based data structures take
advantage of this fact by encoding only vertices and top simplices.
These representations have been widely used in low dimensions
as well, for triangle [PBCF93, RSS01, GR10, GLLR11] and tetra-
hedral meshes [Nie97, GR09, GR10], for simplicial 2-complexes
[DFMPS04] and 3-complexes [DFH03].

The Generalized Indexed data structure with Adjacencies (IA∗)
[CDFW11] is the first top-based data structure defined in a
dimension-independent way, generalizing the IA data structure for
triangle and tetrahedral meshes both in the domain and in the dimen-
sion. The IA∗ data structure encodes all vertices and top simplices
of a simplicial complex �, plus the boundary relation between each
top simplex and its vertices, adjacency relations among top sim-
plices, and partial information about the star of each vertex. Public-
domain implementations are available [Can14, Iur16]. In [FIDF19,
FWD17], it has been shown that the IA∗ data structure is more com-
pact than the IG, requiring, on average, 80% less storage, and it is
always more compact than the Simplex Tree, requiring from 30% of
the storage on lower dimensional datasets, and a small fraction of the
storage on higher dimensional datasets, where it can be observed a
degenerate behaviour of the Simplex Tree as the complex dimension
increases. A more compact representation for simplicial complexes
embedded in the Euclidean space is provided by the Stellar tree
[FWD17], as described in Section 6.

In [BST17], two top-based data structures have been proposed.
The Maximal Simplex Tree is an induced subgraph of the Simplex
Tree, in which only the paths corresponding to top simplices are
encoded. Although it is a compact representation, it does not provide
a complete description of the complex, since it is not possible to
extract from it all its simplices. The Simplex Array List is a directed
acyclic graph storing all the edges of a simplicial complex � and
representing the incidence relations among the remaining simplices
in such a way that a simplex in � is represented in at least one path
in such a graph. While the Simplex Array List could be a viable
option for achieving compactness, performing edge contractions on
such representation would be unfeasible, requiring to rebuild the
entire data structure at each edge contraction [BST17]. Moreover,
no implemented version is available in the public domain for both
these data structures.

The Skeleton-Blocker data structure [ALS11] has been specifi-
cally designed for homology-preserving edge contractions on sim-
plicial complexes. It encodes the 1-skeleton of a simplicial complex
�, which is the 1-complex formed by its vertices and edges, plus,
for each edge, the set of incident blockers. A blocker (also called
an empty simplex) is a p-simplex σ that is not in �, but all its faces
are. The Skeleton-Blocker uses a sort of dual approach for encoding
a complex, and thus, it cannot be classified either as simplex-based
or top-based. In Section 7, we describe the Skeleton-Blocker data
structure in more details when comparing it to our approach based
on the Stellar tree [FWD17].

Edge contraction has been a very common operation for
simplifying triangle [PS97, GGK02] and tetrahedral meshes
[CDFM*04, WRK*10, ZQC*14]. A very large body of literature
exists dealing with geometric ways of preserving the quality of
the simplified mesh and of the surface approximation, and with

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

248 R. Fellegara et al. / Efficient Simplification of Simplicial Shapes

Figure 4: Edge contraction of ε = {ν1, ν2} on a triangle mesh. Top
simplex σ1 becomes a face of triangle σ2 after the contraction of
edge ε.

multi-resolution models based on such operation [DFKP05]. Edge
contraction algorithms for general (non-manifold) simplicial 2- and
3-complexes have been presented in [DFMPS04, DFH03],
where the complexes have been encoded in dimension-specific
top-based data structures. Edge contraction algorithms for arbitrary-
dimensional simplicial complexes are described in [PH97] based
on an encoding of the complex as an IG and in [ALS11] based on
the Skeleton-Blocker representation.

4. Edge Contraction on a Top-Based Representation
of a Simplicial Complex

In this section, we provide the definition of the edge contraction
operator for a top-based representation of a simplicial complex.
Note that our definition is independent of the way the top-based
representation is actually encoded. Given a simplicial complex
�, its top-based representation, that we denote as �top , consists
only of the top simplices of � expressed in terms of their
vertices.

A top-based edge contraction consists of applying map μ, de-
fined in Section 2.3, to the simplices of �top rather than to all the
simplices of �. An edge contraction on � and the corresponding
top-based edge contraction on �top determine (up to closure) the
same simplicial complex, as proven in Proposition 1. Recall that the
closure of a set of simplices S, denoted as Cl(S), is the smallest
simplicial complex that contains each simplex in S.

Proposition 1. Cl(μ(�top)) = μ(�).

The proof is reported in Appendix A.1.

Proposition 1 tells us that the top simplices of simplicial complex
μ(�), obtained from � after the contraction of edge ε = {ν1, ν2},
can be retrieved by applying map μ to the simplices in �top . On
the other hand, applying μ to a simplex τ in �top may generate a
simplex μ(τ) that is no longer a top simplex, and thus, the top-based
representation μ(�)top of complex μ(�) might not be a proper
subset of μ(�top). Figure 4 shows an example of a top simplex,
edge σ1, that becomes a face of σ2 after the contraction of edge
ε = {ν1, ν2}.

Figure 5: Example of an edge contraction on ε = {ν1, ν2} not sat-
isfying the link condition. The top simplices incident in ν1 (depicted
in red) and those incident in ν2 (depicted in blue) are intersected.
The simplices σ4 and σ2 are incident in vertex ν4, but, since there is
no top simplex in Sttop(ε) that contains ν4, the link condition is not
verified.

5. Homology-Preserving Edge Contraction

In this section, we present an algorithm for homology-preserving
edge contraction on the top-based representation of a simpli-
cial complex. Notice that it can be applied to any top-based
representation, like an adjacency-based data structure [PBCF93,
CDFW11, DFH03, DFMPS04], a hierarchical topological data
structure [FWD17] and a corner-based data structure [RSS01,
GR09, GR10, GLLR11]. Given the top-based representation �top

of a simplicial complex �, the objective is to obtain, through a
homology-preserving edge contraction applied to �top , the top-
based representation of the resulting complex. To this aim, we define
a top-based link condition, which we prove to be equivalent to the
link condition.

5.1. Top-based link condition

The link condition provides a sufficient condition for declaring an
edge contraction homology-preserving. This test is computationally
expensive since it requires considering all the simplices of a com-
plex. We introduce here a new link condition that works only on
the top simplices, and thus, on the top-based representation of a
simplicial complex.

We define, for each simplex σ in �, the top star of σ , Sttop(σ),
as the set of top simplices in the star of σ . We define an edge
ε = {ν1, ν2} ∈ � to satisfy the top-based link condition if and only
if

∀τ1, τ2 exists τ ∈ Sttop(ε) such that τ1 ∩ τ2 ⊆ τ (2)

with τ1 ∈ Sttop(ν1) − Sttop(ε) and τ2 ∈ Sttop(ν2) − Sttop(ε).

Proposition 2. The link condition (1) and the top-based link con-
dition (2) are equivalent.

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

R. Fellegara et al. / Efficient Simplification of Simplicial Shapes 249

The proof is reported in Appendix A.2.

The above proposition ensures that, if an edge ε in � satisfies
the top-based link condition, then an edge contraction applied to ε

preserves the homology of �.

Algorithm 1. LINK_CONDITION (ε, Sttop(ν1), Sttop(ν2), Sttop(ε))

Algorithm 1 illustrates how to verify the top-based link con-
dition. The first step consists of generating two lists T1 and T2,
containing all top simplices in the star of ν1 and ν2, excluding
those in the star of ε (rows 2 and 3). Then, a loop is performed
on all the top simplices in T1 and T2 and, for each pair of top
simplices τ1 and τ2, their shared face is extracted (row 7). If such
face ρ = τ1 ∩ τ2 exists (row 8) and ρ is not a face of any top sim-
plex in the star of ε (row 10), the top-based link condition is not
satisfied.

An example is shown in Figure 5. Here, by considering the top
simplices incident in ν1 and ν2 and disregarding those incident in
ε, we find the two vertices ν3 and ν4, depicted in green, contained,
respectively, in T1 and T2. Since only ν3 is in the boundary of a top
simplex σ1 in the top star of ε, we conclude that the link condition
is not satisfied.

We analyse the time complexity of Algorithm 1. We denote by m

the maximum cardinality between Sttop(ν1) and Sttop(ν2) and by d

the dimension of �. Generating lists T1 and T2 requires O(mlog(m))
time, since Sttop(ν1), Sttop(ν2) and Sttop(ε) are sorted arrays. Com-
puting the face shared by two top simplices τ1 and τ2 (function
NOT BOUNDARY FACE) is linear in the number of vertices of τ1 and τ2,
and thus, O(d). For computing the boundary face ρ of a top sim-
plex in Sttop(ε), the algorithm iterates over all the top simplices in
Sttop(ε): for each top simplex τ , it checks if τ contains the vertices
of ρ. The complexity of function NOT BOUNDARY FACE is thus O(dm).
The time complexity of Algorithm 1 is dominated by that of the two
nested loops, and thus, it is O(dm3), which reduces to O(m3), if we
assume d to be a constant.

Figure 6: Example of an edge contraction where Sttop(ε) =
{σ1, σ2}. (b) The set of simplices R = {σ1, σ2} is removed from �top

and the set of simplices I = {σ3, σ4, σ5} is updated changing their
boundary vertex ν1 with ν2. (c) Since both faces γ1 and γ2 of σ2 are
not faces of any other simplex, γ1 is introduced as a top simplex in
�top for preserving its homology.

5.2. A homology-preserving top-based edge contraction
algorithm

In Section 4, we have shown that a top-based edge contraction
is equivalent to a classic edge contraction defined on all the sim-
plices of a simplicial complex �. Thanks to Proposition 1, the top
simplices of the simplicial complex μ(�) obtained after the con-
traction of edge ε = {ν1, ν2} can be retrieved by applying map μ

to the simplices in �top . It can happen that the application of func-
tion μ to a simplex τ in �top produces a simplex μ(τ) that is no
longer a top simplex. Thus, μ(�top) may not be a top-based repre-
sentation, since it might contain also non-top simplices, and thus,
μ(�top) � μ(�)top, as shown in the example of Figure 4. Our ob-
jective is to obtain μ(�)top as result of a homology-preserving edge
contraction applied to �top .

We consider edge ε = {ν1, ν2} to be contracted into vertex ν2.
Given a simplex τ in �top , if τ belongs to �top − Sttop(ν1), μ(τ) = τ

is a top simplex in μ(�). Otherwise, we have two cases depending on
whether τ belongs to Sttop(ε) or Sttop(ν1) − Sttop(ε). The first case
is discussed in Proposition 3, while the second case is discussed in
Proposition 4.

Proposition 3. Let τ be a simplex in Sttop(ε) and, for i = 1, 2, let
denote γi as the simplex τ − νi . We have that:

μ(τ) ∈ μ(�)top ⇐⇒ Sttop(γ1) ∪ Sttop(γ2) = {τ }. (3)

The proof is reported in Appendix A.3.

Proposition 3 provides a simple condition for verifying whether
a new top simplex is introduced during an edge contraction. In the
example of Figure 6, we consider σ2 and its boundary faces γ1

and γ2. Since both γ1 and γ2 are not faces of any other simplex,
μ(σ2) = γ1 is reintroduced as top simplex.

Proposition 4 considers the case in which simplex τ belongs to
Sttop(ν1) − Sttop(ε). It shows that, if the top-based link condition is
satisfied, all the top simplices in Sttop(ν1) − Sttop(ε) will be mapped
into top simplices in μ(�)top . In other words, none of them will
become a face of another top simplex. In general, this does not
occur if the top-based link condition is not satisfied.

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

250 R. Fellegara et al. / Efficient Simplification of Simplicial Shapes

Proposition 4. Let τ be a simplex in Sttop(ν1) − Sttop(ε). If the link
condition (1) (or, equivalently, the top-based link condition (2)) is
satisfied, then μ(τ) ∈ μ(�)top. Moreover, μ−1(μ(τ)) ∩ �top = {τ },
i.e., τ is the only top simplex of � which is mapped into μ(τ) via μ.

The proof is reported in Appendix A.4.

Algorithm 2. CONTRACT (ε, Sttop(ν1), Sttop(ν2), Sttop(ε), �top)

Algorithm 2 describes the procedure for performing the edge
contraction μ of ε on a top-based representation. Since the validity
of the link condition is required, the edge contraction described by
the following algorithm is homology-preserving.

The algorithm takes as input the edge ε to be contracted, the
top-based representation �top , and the top stars of ν1, ν2 and ε. For
each top simplex τ in Sttop(ε), the algorithm checks if a top simplex
γ1 needs to be added in its place in order to preserve the homology
of the complex. More precisely, as from Proposition 3, a simplex
τ ∈ Sttop(ε) has to be replaced in �top with μ(τ) = γ1 if Sttop(γ1) ∪
Sttop(γ2) = {τ }. For checking this condition, Algorithm 2 executes
the following steps. Two-candidate simplices γ1 and γ2 are extracted
by removing ν1 and ν2, respectively, from τ (rows 4 and 5). The
top stars of γ1 and γ2 are extracted by starting from Sttop(ν2) and
Sttop(ν1), respectively (rows 7 and 8). Specifically, function TOP STAR

iterates over the top simplices in Sttop(νj), and add to Sttop(γi) only
those top simplices that have γi in their boundary. Finally (in rows 9
and 10), as established by Proposition 3, if the union of Sttop(γ1) and
Sttop(γ2) consists just of τ , γ1 is added to �top . Then, τ is removed
from �top (row 12). The final step of Algorithm 2 updates the top
simplices incident in ν1, but not in both ν1 and ν2 (rows 15–17).
Thanks to Proposition 4, we can safely update �top by replacing ν1

with ν2 in τ (rows 16).

We analyse the time complexity of Algorithm 2 in terms of the
maximum cardinality m of Sttop(ν1) and Sttop(ν2) and of the dimen-
sion d of �. Function TOP STAR iterates over the top simplices in
Sttop(ν1) (or Sttop(ν2)): for each top simplex σ , it checks if σ shares

the same vertices with γ2 (or γ1). Thus, it requires O(dm) time.
Note that the first loop is executed exactly |Sttop(ε)| times, while the
second one a number of times linear in the number of elements in
Sttop(ν1)−Sttop(ε). Thus, the overall complexity of Algorithm 2 is
O(dm2), which is quadratic in m, if we assume d to be a constant.

6. Homology-Preserving Simplification on the Stellar Tree

In this section, we briefly review the Stellar tree, the top-based
data structure we use for encoding simplicial complexes. We then
describe an algorithm for homology-preserving simplification based
on it.

6.1. The Stellar Tree

A Stellar tree is a spatio-topological data structure for simplicial
complexes of arbitrary dimension, highly scalable and well suited
for the analysis of both low- and high-dimensional simplicial com-
plexes [FWD17]. It is based on a clustering of the vertices of
a simplicial complex according to a nested decomposition of an
n-dimensional hyper-cubical domain containing such vertices. A
nested decomposition is a hierarchical space-based decomposition
into hyper-cubical blocks in which overlapping blocks are nested
and leaf blocks, i.e., blocks not containing other blocks inside, form
a non-overlapping cover of the domain. The Stellar tree is based
on an n-dimensional generalization of a bucket Point Region (PR)
quadtree [Sam06], where the vertices of the complex are clustered
into buckets with a pre-defined capacity. Only the top simplices of
the complex are encoded in a Stellar tree. A top simplex is associated
with all leaf blocks containing its vertices.

Figure 7 shows an example of a Stellar tree for the simplicial
2-complex in Figure 7(a). A bucket capacity equal to 3 is used,
i.e., at most three vertices can belong to the same leaf block (see
Figure 7b). Each triangle (top simplex) σ is introduced into a leaf
block if at least one of its vertices is therein contained. For example,
as shown in Figure 7(c), block b3 contains three vertices and three
triangles. The final Stellar tree is shown in Figure 7(d).

In our implementation of the Stellar tree, the vertex coordinates
and the connectivity of the top simplices in the complex (i.e., for
each top simplex, its bounding vertices) are maintained in two global
arrays, that we call vertices and top-simplices arrays. To encode the
vertices and top simplices associated with the leaf blocks (i.e., the
indexes of the vertices and top simplices in the two global arrays), a
compressed encoding [FWD17] is used, which is based on a variant
of the run-length encoding [HM91]. It has been shown in [FWD17]
that the Stellar tree requires from 40% to 50% less storage than the
most compact dimension-independent data structure for simplicial
complexes, the IA∗ data structure [CDFW11], and from 65% to 99%
less storage than the Simplex Tree [BM14].

6.2. Simplification through edge contraction

The simplification algorithm developed for the Stellar tree applies
a homology-preserving edge contraction (Algorithm 2), after veri-
fying the top-based link condition (Algorithm 1), to the candidate
edges in each of its leaf blocks. The tree is visited according to a

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

R. Fellegara et al. / Efficient Simplification of Simplicial Shapes 251

Figure 7: A simplicial 2-complex (a). The nested decomposition obtained by subdividing the space based on its points through a bucket
PR-quadtree (b). Each leaf block of a Stellar tree encodes the top simplices incident in at least one of the vertices contained in it. For example,
in (c), leaf block b3 contains three vertices and three triangles. In (d), the Stellar tree for the complex in (a) is shown.

depth-first traversal. As a consequence, the indexes of the vertices
inside a leaf block b are always greater than those in the leaf blocks
preceding b in the traversal. In the following, an edge ε = {ν1, ν2}
is considered as a pair of vertex indexes in the vertices array of �.
For simplicity, we still denote the two vertex indexes as ν1 and ν2,
and we assume that ν1 < ν2.

Each leaf block b is considered separately. The homology-
preserving simplification algorithm performs the following steps
on b:

(1) Extract the top stars of all the vertices in leaf block b. The top
stars of the extreme vertices of the edges are needed both for
verifying the top-based link condition and performing edge
contraction.

(2) Identify candidate edges. An edge ε = {ν1, ν2} is a candidate
edge if at least vertex ν2 is indexed by the current block b. Thus,
the top star of ε can be reconstructed inside b from Sttop(ν2).
Note that there can be two types of candidate edges in b,
depending on whether they have both their extreme vertices in
b or just one of them. We call the former internal edges, and
the latter cross edges. In the example of Figure 8(a), internal
edges are depicted in black and cross edges in red.

(3) Simplify candidate edges. Candidate edges are processed with-
out following any priority, as our objective is just to preserve
the homology of the simplicial complex, which can be ob-
tained through any simplification order. The simplification
procedure can be easily extended to handle a priority queue,
in which the edges are sorted following a specific criterion
(like, for example, edge length). On each candidate edge ε,
the top-based link condition is checked by applying Algo-
rithm 1. If verified, the edge contraction on ε is performed by
Algorithm 2, which also updates the global vertices and top-
simplices arrays. Finally, the indexing structure of the Stellar
tree is updated by locally modifying leaf block b, and, if ε is
a cross edge, also the leaf block containing vertex v1.

(4) Maintain and update the cache. We use an auxiliary Least
Recent Used (LRU) cache for increasing runtime efficiency
by keeping in cache the top stars of the vertices indexed by a
subset of those leaf blocks which are in the proximity of block
b. At the end of the processing of a leaf block b, the top stars
of the vertices in b are stored in cache.

Figure 8(b) shows an example of a contraction of a cross edge
ε. The triangles involved in the top-based link condition are those
incident in ν2 (i.e., σ0 and σ1) and those incident in ν1 (i.e., σ1, σ2, σ3

and σ4). Edge ε is contracted since the top-based link condition is
verified. After edge contraction (Figure 8(c)), triangle σ1 is removed
from b1 and b3, as it was incident in ε, and triangles σ3 and σ4 are
removed as well as ν1 was the only vertex indexed by b1 in which
they were incident. Dually, triangles σ2, σ3 and σ4 are added to b3.

Algorithm 3. LEAF_SIMPLIFICATION(b, �top , C, bR)

Algorithm 3 provides a pseudo-code description of the homology-
preserving edge contraction on a Stellar tree. At the beginning, the
local top stars for all the vertices indexed by leaf block b (row 2)
are extracted as well as the candidate edges (row 4). Extracting the
top stars Sttop of the vertices requires knowing the set of vertices
contained in b. An array, denoted as top stars, is used for encoding
the local top stars: the i-th position in the array corresponds to the

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

252 R. Fellegara et al. / Efficient Simplification of Simplicial Shapes

Figure 8: (a) The set of internal edges, i.e., edges contained in a single-leaf block, are depicted in black, while the set of cross edges, i.e.,
edges with vertices contained in two different blocks, are depicted in red. (b) Example of a contraction operation over edge ε = {ν1, ν2}, with
the triangles and leaf blocks involved in the simplification/update phase. (c) The updated Stellar tree.

i-th vertex indexed in b. The top stars are extracted by cycling on the
set of top simplices in b. For each top simplex σ in b, the algorithm
iterates through the vertices of σ , and, for each vertex ν of σ indexed
by b, σ is added to the list of top simplices incident in ν (row 2,
function LOCAL TOP STARS). A queue Q is initialized with the candi-
date edges ε = {ν1, ν2} (row 4, function CANDIDATE EDGES)which are
identified by iterating over the top simplices of b.

During the simplification step, the candidate edges in Q are pro-
cessed (rows from 5 to 17). For the current edge ε, the top stars
of ν1 and ν2 are considered (rows 6 and 7, function TOP STAR). By
definition of candidate edge, ν2 is indexed in b, and thus, its top
star is encoded in the top stars array. Conversely, ν1 can be either
indexed in b, or in a leaf block b′ that has been already processed,
since ν1 < ν2. Thus, Sttop(ν1) can be found in cache, or it has to
be re-computed. In a worst-case scenario, the hierarchy needs to
be traversed in order to identify b′, which corresponds to execute a
point location for ν1, and to compute the local top stars of b′. The top
star of ε is obtained by intersecting the top stars of ν1 and ν2 (row
9). The top-based link condition for ε is tested by using Algorithm 1
(row 11) and, if the condition is verified, Algorithm 2 is applied
to contract edge ε (row 13). Procedure UPDATE INDEX modifies the
Stellar tree (row 15). If ε is an internal edge, the update is local to
leaf block b. If ε is a cross edge between two blocks b and b′, the top
simplices that were incident in ν1, but not in any other vertex of b,
are added to b. Dually, the top simplices in b′ that were incident only
in ν1 are removed from b′. Also, the top simplices in Sttop(ε) are
removed from b, and from b′, if ε is a cross edge. After processing
all the candidates edges, the local top stars encoded in the top stars

array are added to the cache (row 18).

We analyse here the running time of Algorithm 3. The time com-
plexity of LOCAL TOP STAR and of CANDIDATE EDGES is linear in the
number tb of top simplices in b, and in the number eb of edges in b,
respectively. Since Sttop(ν1) and Sttop(ν2) are sorted arrays, comput-
ing Sttop(ε) requires O(mlog(m)), where m is the maximum of the
cardinalities of Sttop(ν1) and Sttop(ν2). As discussed in Sections 5.1
and 5.2, LINK CONDITION and CONTRACT require O(m3) and O(m2),
respectively. All steps of Algorithm 3 perform local operations on
b, except when the top star of ν1 is not in cache, which may oc-
cur only in TOP STAR or in UPDATE INDEX. This leads to a worst-case

cost linear in the number of tree blocks, which is not a significant
performance measure, as it is generally the case with hierarchical
spatial indexes [Sam06]. This behaviour is also confirmed by our
experimental evaluation (see Section 7), which shows that the run-
ning time of Algorithm 3 is dominated by checking the top-based
link condition and performing edge contractions, while navigating
the hierarchy has a negligible computational impact.

7. Experimental Analysis and Comparison

In this section, we evaluate the performances of the top-based
homology-preserving edge contraction operator we have devel-
oped on the Stellar tree. We perform comparisons between the
top-based link condition proposed here and the weak link condi-
tion in [DHKS13], that we have also implemented on the Stellar
tree. We extensively compare our results with those obtained by
performing edge contraction based on the Skeleton-Blocker data
structure [ALS11]. This latter is considered the best state-of-the-art
data structure for performing edge contraction [SLA15]. The edge
contraction and link condition used by the Skeleton-Blocker data
structure are those implemented in the Gudhi library [GUD18]. The
hardware configuration used in our experiments is a single worksta-
tion equipped with an Intel Xeon E5-2630 v4 CPU at 2.20 GHz and
64GB of RAM. The source code is available at [Fel19].

7.1. The Skeleton-Blocker data structure

The Skeleton-Blocker [ALS11] is a data structure designed
specifically for performing homology-preserving edge contractions
on simplicial complexes close to flag complexes. This data structure
encodes a simplicial complex � as its 1-skeleton plus a set of
blockers. A blocker is a ‘missing’ simplex, i.e., a p-simplex that
is not in �, but all its faces are. In the example of Figure 3(b),
{v1, v2, v4} identifies a blocker. The Skeleton-Blocker data structure
can be generated efficiently when considering flag complexes.
Recall that the top simplices of a flag complex are the maximal
cliques of the 1-skeleton of the complex. Since flag complexes have
no blockers, a Skeleton-Blocker representation of a flag complex is
just its 1-skeleton. Conversely, for arbitrary simplicial complexes,
the blockers need to be computed when the data structure is

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

R. Fellegara et al. / Efficient Simplification of Simplicial Shapes 253

generated, thus leading to high computation times (as shown in our
experiments).

The Skeleton-Blocker data structure supports an efficient
implementation of the link condition. As proved in [ALS11], the
link condition for an edge ε = {ν1, ν2} is verified if there are no
blockers incident into ε. Thus, let B1 denote the set of blockers
incident into vertex ν1. The link condition is verified if ν2 does not
appear in any blocker b ∈ B1. We recall that a blocker of dimension
k is a collection of k + 1 vertices. Thus, searching if ν2 ∈ b can be
done in O(log(k)) time. If d is the dimension of the complex, the
link condition can be verified in O(|B1|log(d)) in the worst case
[ALS11]. Updating the data structure after an edge contraction can
be quite time-consuming, depending on the number of blockers.
After contracting ε = {ν1, ν2}, the two sets of blockers B1 and B2

associated with ν1 and ν2, respectively, need to be updated. The
faces of each blocker b are extracted by considering all the subsets
of vertices b. We call S1 and S2 the set of simplices in B1 and B2,
respectively. For each pair of simplices (σ1, σ2), with σ1 ∈ S1 and
σ2 ∈ S2, it is checked if simplex σ = σ1 ∪ σ2 belongs to �, and if
the simplices on its boundary belong to Lk(ν1) ∪ Lk(ν2). We refer to
[ALS11] for a precise analysis of the complexity of these operations.

A direct comparison of the complexity of our approach imple-
mented in the Stellar tree and the one defined in the Skeleton-Blocker
is not straightforward as the Skeleton-Blocker is mainly dependent
on the number of blockers in the star of each vertex, while our
approach depends on the number of top simplices. As shown by
the experiments, the Skeleton-Blocker is faster at checking the link
condition, but its performance at updating the structure after a sim-
plification is heavily affected by the number of blockers in �. Con-
versely, the Stellar tree is slower at checking the link condition, but
it is faster at updating the top-based representation of the complex
and the hierarchy indexing it.

7.2. Simplifying a simplicial complex

In this section, we evaluate the performances of the homology-
preserving edge contraction as implemented on the Stellar tree and
on the Skeleton-Blocker data structure when simplifying arbitrary-
dimensional simplicial complexes.

The datasets used in these experiments are listed in Table 1. Two
point clouds are originated by GPS data (CHICAGO and ATHENS) em-
bedded in a 2D space. Three datasets are extracted from point clouds
embedded in 3D space, two datasets are obtained from volumetric
data (VISMALE and FOOT) and one from a 3D surface (LUCY). Two
point clouds are sampled from a 4D sphere (S3) and from a 5D Klein
bottle (KL). Two point clouds HUMAN GENOME and HIV represent real
data in 10 and 20 dimensions, respectively [OPT*17]. Overall, the
datasets used contain between 1000 and 14 millions points.

From the point clouds, we generate VR-complexes by using an
algorithm we have developed for the Stellar tree. The algorithm
computes first the neighbourhood graph from the point cloud by
connecting pairs of points closer than a user-defined distance ω,
and, for this, it exploits the hierarchical spatial index defining the
Stellar tree. Then, it computes the maximal cliques of such graph
by extending the Bron-Kerbosch clique computation algorithm with
pivoting [TTT06]. The dimension of the VR-complexes generated

Table 1: Statistics on initial and simplified VR-complexes: number of ver-
tices, number of top simplices, dimension of the complex in the initial and
in the final simplicial complex and percentage of simplices removed (%). ω

is the threshold used for generating the VR-complex.

Initial � Final �

Data ω |�V | |�top| d |�V | |�top| d %

CHICAGO
28

9.43K
4.66K 27 3.05K 0.23K 3 95.1

56 6.59K 62 1.44K 0.27K 3 95.9

ATHENS
63

32.2K
21.5K 37 4.30K 1.58K 3 92.6

126 39.1K 68 1.03K 1.91K 3 95.1

VISMALE 3.5 4.65M 6.39M 7 0.42M 1.91M 7 70.2

FOOT 4.5 5.02M 63.9M 10 0.33M 2.19M 10 96.6

LUCY 1.5 14.0M 41.1M 34 0.04M 0.14M 5 99.7

S3
0.5

2.00K
44.4K 13 0.07K 0.48K 8 98.9

0.6 144K 20 0.08K 0.75K 12 99.5

KL
0.25

10.0K
49.2K 29 0.03K 0.08K 3 99.8

0.35 112K 61 0.02K 0.06K 4 99.9

HIV
150

1.09K
2.81K 20 0.41K 0.12K 8 95.9

160 21.3K 51 0.35K 0.09K 4 99.9

GENOME
9.0

1.40K
5.62K 19 0.48K 0.68K 10 87.9

9.6 10.85K 21 0.42K 0.51K 10 95.3

span from 7 to 68. In Table 1, we also show the compression achieved
while simplifying the generated VR-complexes by applying edge
contraction. Note that all possible contractions that maintain ho-
mology have been applied. The percentage of simplices removed
is, on average, around 95%–99%, and also the dimension of the
complex is usually drastically reduced.

We compare the storage requirements of the Stellar tree and of
the Skeleton-Blocker data structure for encoding each simplicial
complex. In Table 2, we show the static storage costs considering,
for the Stellar tree, the encoding of the hierarchy and of the arrays
of top simplices and vertices, and, for the Skeleton-Blocker data
structure, the cost for encoding the 1-skeleton and the blockers. We
can notice that the Stellar tree uses on average about 40% of the
memory required by the Skeleton-Blocker. Only on some smaller
datasets, the Skeleton-Blocker uses on average 10% less storage than
a Stellar tree, and this happens since, in these cases, the compression
produced by the spatial index is less effective due to the distribution
of top simplices across the hierarchy.

In Table 2, we also present the comparison of the three simpli-
fication methods, i.e., by using the Stellar tree with the top-based
link condition, and with the weak link condition, and by using the
Skeleton-Blocker data structure. We present the time required for
checking the link conditions (column check) and the time required
for contracting the edges (column contr.) separately. Note that the
total computation time (column tot) for the approach based on the
Stellar tree does not correspond to the sum of the values in the check

and contr . columns, as it takes into account also the time required
for visiting the hierarchy, computing the local top stars in each leaf
block b and inserting them in cache.

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

254 R. Fellegara et al. / Efficient Simplification of Simplicial Shapes

Table 2: Number of contracted edges, experimental timings, and memory peak (before and after the simplification procedure) obtained by the two Stellar tree
strategies and by the Skeleton-Blocker. The timings shown are the time required for checking the link condition (check column), executing the edge contractions
(contr. column) and the overall timings of the whole simplification procedure (tot column), and are expressed in terms of seconds (s), minutes (min) and hours
(h). The memory peaks consider the memory used for generating the data structure (gen. column) and those for executing the simplification procedure (simpl.
column) and are expressed in terms of megabytes.

Contr.
Timings Memory peak

Data ω Edges check contr. tot gen. simpl.

CHICAGO

weak 9.15 h 2.27 m 9.19 h
5.6

57.2K
28 top 6.38K 0.01 s 0.02 s 0.09 s 7.6

Skel. 0.00 s 0.15 s 0.15 s 7.8 7.8

weak out-of-memory
6.2

–
56 top 7.99K 0.04 s 0.06 s 0.23 s 10.8

Skel. 0.00 s 0.71 s 0.71 s 14.1 14.1

ATHENS

weak out-of-memory
11.6

–
63 top 27.9K 0.08 s 0.11 s 0.38 s 14.9

Skel. 0.00 s 0.74 s 0.75 s 26.4 26.8

weak out-of-memory
10.0

–
126 top 31.2K 0.40 s 0.49 s 1.36 s 25.9

Skel. 0.01 s 7.73 s 7.74 s 66.1 66.7

VISMALE

weak 34.3 m 1.28 m 40.4 m
1.0K

2.0K
3.5 top 4.23M 4.34 m 0.89 m 7.20 m 2.0K

Skel. 0.76 m 3.34 h 3.35 h 8.0K 8.0K

FOOT

weak killed after 25 h
7.5K

–
4.5 top 4.69M 2.89 h 26.0 m 3.32 h 10.7K

Skel. killed after 25 h 19.4K –

LUCY

weak killed after 25 h
7.5K

–
1.5 top 14.0M 11.9 m 14.8 m 32.0 m 15.4K

Skel. 23.19 s 14.6 h 14.6 h 50.9K 52.1K

S3

weak 5.58 m 4.12 s 5.89 m
10.7

27.8
0.5 top 1.93K 9.44 s 1.38 s 10.89 s 13.1

Skel. 0.04 s 1.26 m 1.26 m 12.1 13.1

weak killed after 25 h
29.3

–
0.6 top 1.93K 5.91 m 0.79 m 6.72 m 46.0

Skel. 0.11 s 19.4 m 19.4 m 18.7 22.5

KL

weak killed after 25 h
11.1

–
0.25 top 9.97K 1.25 s 0.67 s 2.19 s 17.8

Skel. 0.01 s 14.2 s 14.2 s 32.2 32.7

weak killed after 25 h
23.8

–
0.35 top 9.98K 1.21 m 17.9 s 1.54 m 61.0

Skel. 0.02 s 1.67 m 1.67 m 61.6 63.6

HIV

weak 12.1 m 5.9 s 12.2 m
4.2

0.9K
150 top 0.68K 1.41 s 0.10 s 1.54 s 5.2

Skel. 0.00 s 1.59 s 1.60 s 3.4 4.3

weak killed after 25 h
4.5

–
160 top 0.74K 15.3 s 0.69 s 16.0 s 6.3

Skel. 0.00 s 0.90 s 0.90 s 3.8 4.9

GENOME

weak 3.12 m 0.90 s 3.18 m
4.6

0.2K
9.0 top 0.92K 2.11 s 0.12 s 2.29 s 5.6

Skel. 0.01 s 14.0 s 14.0 s 4.3 5.5

weak 47.0 m 23.0 s 47.6 m
5.3

0.8K
9.6 top 0.97K 19.3 s 0.75 s 20.0 s 7.1

Skel. 0.01 s 26.3 s 26.3 s 4.9 7.0

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

R. Fellegara et al. / Efficient Simplification of Simplicial Shapes 255

The limitation of the approach based on the weak link condition
is clear. The simplification process ends in very few cases and,
when the dimension of the complex increases, the process exceeds
the 64GB of available memory. In the few cases when the
simplification ends, processing time mainly accounts for checking
the link condition (as shown by a comparison of the results in
columns check and contr.).

When comparing the memory usage (column memory peak,
simpl.), we see that the use of the weak link condition is gener-
ally unfeasible. By looking at the few datasets for which the weak
link condition ends the computation (CHICAGO, VISMALE, S3, HIV and
GENOME), we can see that the approaches based on the top-based
and on the weak link conditions use the same amount of memory
only in VISMALE, where the dimension of the complex is limited to 7.
When considering the memory peak, on S3, the top-based approach
requires half of the memory used by the weak link condition and,
on CHICAGO, HIV and GENOME datasets, only a small fraction of the
memory is used by the top-based approach with respect to the other.

These results confirm that the weak link condition scales only
when the dimension of the simplicial complex is low, while the
performances easily degrade when the dimension of the complex
increases. It cannot be used on VR-complexes of dimension larger
than 30, because of memory requirements and of high increase in
simplification time.

When comparing the performance of the approach based on the
Stellar tree and on the top-based link condition with the one based
on the Skeleton-Blocker, we can see that the former one is generally
faster. The Skeleton-Blocker data structure requires more efforts for
updating the structure during edge contraction, while it supports a
fast verification of the link condition. On the VR-complexes built on
road networks, the approach based on the Stellar tree requires from
20% to 60% of the time needed by the one based on the Skeleton-
Blocker representation. Considering the memory peak, the Stellar
tree is more compact on tracking datasets, using from 40% to 95%
of the memory required by the Skeleton-Blocker data structure.

On the VR-complex built on VISMALE and LUCY datasets, the Stellar
tree uses 5% of the time and requires from 70% to 75% less memory
with respect to the Skeleton-Blocker data structure. On FOOT dataset,
the generation of the Skeleton-Blocker does not end in 25 hours, and
its memory peak, during this phase, reaches nearly 48GB, which is
more than six times higher than the one of the Stellar tree.

On VR-complexes built from synthetic point clouds (S3 and KL),
the approach based on the Stellar tree and on the top-based link
condition is generally faster than the one based on the Skeleton-
Blocker. The former provides a speedup that goes from 5% to 15%
on S3, and from 15% to 90% on KL.

On KL, the Stellar tree is more compact, since it uses from 55% to
95% of the memory required by the Skeleton-Blocker. Conversely,
on S3 with ω = 0.6, the Stellar tree uses up to twice the memory
required by the Skeleton-Blocker. In this case, just the indexed mesh
representation (inside the Stellar tree) has the same space require-
ments as the Skeleton-Blocker (approximately 18MB), since the
majority of the top simplices in this dataset are in high dimensions
(between 13 and 17). Moreover, the average number of leaf blocks
to which each top simplex belongs is higher for this dataset than for
the other ones (six rather than between two and four blocks).

Table 3: Number of vertices (|�V |) and of triangles/tetrahedra (|�top|),
before and after the simplification process, of the 3D meshes used in the
experiments.

Initial � Final �

Data |�V | |�top| |�V | |�top|
FERTILITY 242K 483K 0.02K 0.05K
HAND 351K 702K 0.01K 0.02K
BUDDHA 544K 1.09M 0.48K 1.37K
NEPTUNE 2.0M 4.01M 0.01K 0.04K
STATUETTE 5.0M 10.0M 0.02K 0.04K
LUCY 14.0M 28.1M 0.06K 0.12K

RBL 730K 3.89M 8.27K 65.0K
MITO 972K 5.54M 9.91K 96.2K

Figure 9: Memory consumption (in megabytes) of the Skeleton-
Blocker and the Stellar tree for loading a mesh and for generating
the corresponding data structure.

On the VR-complexes built from real-world point clouds (HIV

and GENOME), the approach based on the Stellar tree has better, or
comparable, performances with respect to the Skeleton-Blocker,
except in one case. The Stellar tree is up to 7 times faster than
the Skeleton-Blocker, in the best case, still having similar memory
peaks. The only exception is HIV with ω = 160, where the Skeleton-
Blocker performs significantly better, since the number of blockers
generated during the simplification procedure is low (approximately
100), leading to a fast update step.

7.3. Simplifying a 3D mesh

In this section, we evaluate the performances of the approaches
based on the Stellar tree and on the Skeleton-Blocker data structure
when simplifying triangle and tetrahedral meshes. In the following,
we refer to these complexes as 3D meshes. In Table 3, we present
the six triangle meshes used, which consist of a number of triangles
varying from 483K to 28M, and the two tetrahedral meshes used,
consisting of a number of tetrahedra varying from 3.89M to 5.54M.

Differently from the point cloud datasets used in the previous
section, 3D meshes are commonly provided as a set of top sim-
plices (either triangles or tetrahedra) and vertices. From this in-
put, the Stellar decomposition is efficiently initialized, as the al-
gorithm first generates the spatial decomposition from the vertices
of the mesh, and then inserts the top simplices in those leaf blocks
indexing their vertices. Conversely, the Skeleton-Blocker data struc-
ture is generally initialized from the set of blockers. When these
latter are unknown, the edges and top simplices are extracted and

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

256 R. Fellegara et al. / Efficient Simplification of Simplicial Shapes

Figure 10: Timings (in seconds) for performing a homology-
preserving simplification on eight meshes. For each dataset, we
indicate the time required for performing all the edge contractions
(in orange) and the time required for verifying the link conditions
(in blue) separately.

[242K,483K] [83K,167K] [3K,6K] [0.3K,0.6K]
(a) (b) (c) (d)

Figure 11: Simplification progression on FERTILITY. (a) shows the
shape at full resolution, while (b), (c) and (d) show three inter-
mediate simplifications. Between square brackets, we indicate the
number of vertices and triangles as [|�V |, |�top|].

inserted one by one. Figure 9 shows the memory consumption for
generating the two data structures with 3D meshes of increasing size.
We see that the Stellar tree scales very well when the size of the mesh
increases. Conversely, the Skeleton-Blocker data structure requires
up to 15 times more memory, on triangle meshes, and 35 times more
memory, on tetrahedral meshes, than the Stellar tree to be initialized.

Figure 10 shows the timings required for simplifying the 3D
meshes by comparing the approaches based on the Skeleton-Blocker
data structure, and on the Stellar tree using the top-based link condi-
tion and weak link condition. For each mesh, we distinguish between
the time required for performing edge contraction (depicted in or-
ange) and the time required for verifying the link condition (depicted
in blue). When using the top-based link condition, the Stellar tree is
from five to nine times faster, than the Skeleton-Blocker data struc-
ture in simplifying triangle meshes, and from 35 to 70 times faster
in simplifying tetrahedral meshes. As expected, the link condition is
efficiently verified when using the Skeleton-Blocker data structure,
while most of the computational time is spent updating the data
structure after applying an edge contraction (orange bar).

Figures 11 and 12 show the progressive simplification of
two triangle meshes, FERTILITY and HAND datasets, respectively.
Figures 11(a) and 12(a) show the 3D mesh at full resolution.
Figures 11(b)–(d) and 12(b)–(d) show intermediate simplified
shapes with preserved homology.

[351K,702K] [70K,140K] [6K,12K] [2K,5K]
(a) (b) (c) (d)

Figure 12: Simplification progression on HAND. (a) shows the shape
at full resolution, while (b), (c) and (d) show three intermediate
simplifications. Between square brackets, we indicate the number of
vertices and triangles as [|�V |, |�top|].

8. Concluding Remarks

We have presented an efficient and scalable tool for simplifying
simplicial complexes in arbitrary dimensions. The simplification
algorithm we have defined and implemented takes advantage of
a definition of the edge contraction operator on a top-based rep-
resentation of the complex, resulting in a scalable simplification
procedure. Using a top-based representation, we have also defined
a new way for checking the link condition, suitable for the analysis
of data in any dimension. The simplification algorithm has been
implemented using a general-purpose top-based data structure for
simplicial complexes, the Stellar tree [FWD17]. The source code of
the simplification tool based on the Stellar tree is available in the
public domain [Fel19].

In comparison with a data structure specifically designed for
executing homology-preserving edge contractions, the Skeleton-
Blocker [ALS11], our approach, based on the Stellar tree, exhibits
always better performances on simplicial complexes that are not
VR-complexes. On VR-complexes, it has similar performances as
the Skeleton-Blocker, when the complexes are of small size, and
better performances on complexes of larger size.

Currently, we are working on a multi-resolution model of a simpli-
cial complex generated through a sequence of homology-preserving
edge contractions. By navigating the model, we will be able to ex-
tract refined representations of the simplicial complex at different
levels of resolution. Moreover, we can compute homology and its
generators on the coarse representation, extracting refined homol-
ogy generators alongside with the simplicial complex during the
refinement process. To this aim, we are developing an instance of
the refinement operator, inverse with respect to edge contraction,
called vertex split, capable of refining a simplicial complex and its
homology generators at the same time. The resulting tool would al-
low an interactive exploration of a simplicial shape, combining both
the combinatorial information provided by the simplicial complex
and the qualitative information provided by its homology.

Acknowledgements

The first and second authors contributed equally to this paper. This
work has been partially supported by the US National Science
Foundation under grant number IIS-1116747, and by the University

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

R. Fellegara et al. / Efficient Simplification of Simplicial Shapes 257

of Maryland under the 2017-2018 BSOS DRI Program. The authors
wish to thank Kenneth Weiss for several helpful discussions.

Point clouds originated from tracking data are courtesy of Map
Construction Portal (ATHENS, CHICAGO), volumetric datasets point
clouds are courtesy of Volvis repository (FOOT) and the Volume
Library (volib) (VISMALE). The triangulated surface point cloud is
courtesy of Aim@Shape (FERTILITY, HAND, LUCY). We thank Clement
Maria for providing the S3 and KL datasets.

Appendix

Here, we present the proofs of the propositions enunciated in
Section 4 and Section 5.

A.1. Proof of Proposition 1

Proposition. Cl(μ(�top)) = μ(�).

Proof. “⊆”. Since �top ⊆ �, then μ(�top) ⊆ μ(�). Moreover,
since the closure operator respects the inclusions, Cl(μ(�top)) ⊆
Cl(μ(�)) = μ(�).

“⊇”. Since the top simplices of a simplicial complex completely
characterize the simplicial complex itself, it is enough to prove that
μ(�top) ⊇ μ(�)top , where μ(�)top is the set of top simplices in
μ(�). Given a simplex τ in μ(�)top, let σ be a simplex in μ−1(τ)
such that there exists no σ ′ ∈ μ−1(τ) for which σ � σ ′. Let us
assume that σ �∈ �top . So, there exists a simplex σ ′′ in �top such
that σ � σ ′′. This implies that μ(σ) ⊆ μ(σ ′′). Moreover, thanks
to the maximality condition satisfied by σ , τ = μ(σ) � μ(σ ′′).
This implies that τ is not in μ(�)top leading to a contradiction.
In conclusion, σ is a simplex in �top such that μ(σ) = τ . Then,
τ ∈ μ(�top). �

A.2. Proof of Proposition 2

Proposition. The link condition (1) and the top-based link condi-
tion (2) are equivalent.

Proof. “(1) ⇒ (2)”. Let τ1, τ2 be two simplices such that, for
i = 1, 2, τi ∈ Sttop(νi) − Sttop(ε). By definition, τ1 ∩ τ2 ∈ Lk(ν1) ∩
Lk(ν2). By applying condition (1), τ1 ∩ τ2 ∈ Lk(ε). By definition
of link, there exists τ in Sttop(ε) such that τ1 ∩ τ2 ⊆ τ .

“(1) ⇐ (2)”. Let σ be a simplex in Lk(ν1) ∩ Lk(ν2). Hence,
there exist τ1, τ2 such that, for i = 1, 2, τi ∈ Sttop(νi) and σ ⊆ τi .
If at least one among τ1 and τ2 belongs to Sttop(ε), then σ ∈ Lk(ε).
Otherwise, by applying condition (2), there exists τ ∈ Sttop(ε) such
that σ ⊆ τ1 ∩ τ2 ⊆ τ . So, σ ∈ Lk(ε). �

A.3. Proof of Proposition 3

Proposition. Let τ be a simplex in Sttop(ε) and, for i = 1, 2, let
denote γi as the simplex τ − νi . We have that:

μ(τ) ∈ μ(�)top ⇐⇒ Sttop(γ1) ∪ Sttop(γ2) = {τ }.

Proof. “⇒”. Let us suppose, by absurd, there exists τ ′ ∈ Sttop(γ1) ∪
Sttop(γ2) different from τ . If τ ′ ∈ Sttop(γ1), then μ(τ ′) = τ ′. Oth-
erwise, if τ ′ ∈ Sttop(γ2), then τ ′ = γ2 ∪ σ for a certain simplex σ

disjoint from γ2 and μ(τ ′) = μ(γ2 ∪ σ) = μ(γ2) ∪ μ(σ) = γ1 ∪ σ .
In both cases, μ(τ ′) � γ1 = μ(τ) contradicting the fact that μ(τ) is
a top simplex of μ(�).

“⇐”. Let us suppose, by absurd, there exists τ ′ in μ(�) such that
τ ′ � μ(τ). Let σ be a simplex in μ−1(τ ′). By definition of μ and τ ′,
σ ⊇ γ1 or σ ⊇ γ2. So, by hypothesis, σ ⊆ τ . Then, τ ′ = μ(σ) ⊆
μ(τ) and this contradicts that τ ′ � μ(τ). �

A.4. Proof of Proposition 4

Proposition. Let τ be a simplex in Sttop(ν1) − Sttop(ε). If the link
condition (1) (or, equivalently, the top-based link condition (2)) is
satisfied, then μ(τ) ∈ μ(�)top. Moreover, μ−1(μ(τ)) ∩ �top = {τ },
i.e., τ is the only top simplex of � which is mapped into μ(τ) via
μ.

Proof. Since τ ∈ Sttop(ν1) − Sttop(ε), we can write it as τ = ν1 ∪ γ

such that, for i = 1, 2, νi �∈ γ . Let us suppose, by absurd, that there
exists a simplex τ ′ ∈ μ(�) such that μ(τ) � τ ′. Let us consider σ

a simplex in μ−1(τ ′) and let σ ′ be a top simplex of � containing σ .
Since, by definition, ν2 ∪ γ = μ(τ) � τ ′, we have that for at least
one value of i, νi ∪ γ ⊆ σ ′. Since for i = 1, this contradicts the fact
that τ is a top simplex in �, then ν2 ∪ γ ⊆ σ ′. So, σ ′ ∈ Sttop(ν2) −
Sttop(ε). By applying the top-based link condition (2), there exists
ρ ∈ Sttop(ε) such that τ ∩ σ ′ ⊆ ρ. Since ρ ∈ Sttop(ε) and τ ∩ σ ′ =
γ , then τ = ν1 ∪ γ � ν1 ∪ ν2 ∪ γ ⊆ ρ. This contradicts the fact
that τ ∈ �top . So, μ(τ) ∈ μ(�)top .

Let us prove now that μ−1(μ(τ)) ∩ �top = {τ }. By definition of τ ,
μ−1(μ(τ)) ⊆ {τ, ν2 ∪ γ, ν1 ∪ ν2 ∪ γ }. Since τ ∈ �top , ν1 ∪ ν2 ∪ γ

cannot be a simplex of �. Let us suppose, by absurd, that ν2 ∪
γ ∈ μ−1(μ(τ)) ∩ �top . So, since ν2 ∪ γ ∈ Sttop(ν2) − Sttop(ε), by
applying the top-based link condition (2), there exists ρ ∈ Sttop(ε)
such that τ ∩ (ν2 ∪ γ) ⊆ ρ. Since ρ ∈ Sttop(ε) and τ ∩ (ν2 ∪ γ) =
γ , then τ = ν1 ∪ γ � ν1 ∪ ν2 ∪ γ ⊆ ρ. This contradicts the fact
that τ ∈ �top . Therefore, μ−1(μ(τ)) ∩ �top = {τ }. �

References

[ALS11] ATTALI D., LIEUTIER A., SALINAS D.: Efficient data
structure for representing and simplifying simplicial complexes
in high dimensions. In Proceedings of 27th Annual Sympo-
sium on Computational Geometry (SoCG2011) (Paris, France,
2011).

[BG14] BAMPASIDOU M., GENTIMIS T.: Modeling collaborations with
persistent homology. ArXiv e-prints:1403.5346, March 2014.

[BM14] BOISSONNAT J.-D., MARIA C.: The Simplex Tree: An efficient
data structure for general simplicial complexes. Algorithmica 70,
3 (2014), 406–427.

[BST17] BOISSONNAT J.-D., KARTHIK C. S., TAVENAS S.: Building
efficient and compact data structures for simplicial complexes.
Algorithmica 79, 2 (October 2017), 530–567.

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

258 R. Fellegara et al. / Efficient Simplification of Simplicial Shapes

[Can14] CANINO D.: Mangrove topological data structure library,
2014. https://sourceforge.net/projects/mangrovetds/. Online Ac-
cessed June 2019.

[CDFM*04] CIGNONI P., DE FLORIANI L., MAGILLO P., PUPPO E.,
SCOPIGNO R.: Selective refinement queries for volume visualiza-
tion of unstructured tetrahedral meshes. IEEE Transactions on
Visualization and Computer Graphics 10, 1 (January 2004), 29–
45.

[CDFW11] CANINO D., DE FLORIANI L., WEISS K.: IA∗: An
adjacency-based representation for non-manifold simplicial
shapes in arbitrary dimensions. Computers & Graphics 35, 3
(2011), 747–753.

[CRS15] CASSIDY B., RAE C., SOLO V.: Brain activity: Conditional
dissimilarity and persistent homology. In 2015 IEEE 12th In-
ternational Symposium on Biomedical Imaging (ISBI) (2015),
pp. 1356–1359.

[DEGN99] DEY T. K., EDELSBRUNNER H., GUHA S., NEKHAYEV D. V.:
Topology preserving edge contraction. Publications de l’Institut
Mathématique 66 (1999), 23–45.

[DFH03] DE FLORIANI L., HUI A.: A scalable data structure for
three-dimensional non-manifold objects. In SGP’03: Proceed-
ings of the 2003 Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing (Aire-la-Ville, Switzerland, Switzerland,
2003), Eurographics Association, pp. 72–82.

[DFH05] DE FLORIANI L., HUI A.: Data structures for simplicial
complexes: An analysis and a comparison. In Proceedings of
Symposium on Geometry Processing (2005), pp. 119–128.

[DFKP05] DE FLORIANI L., KOBBELT L., PUPPO E.: A survey on data
structures for level-of-detail models. In Advances in Multiresolu-
tion for Geometric Modelling. M. Sabin and N. Dodgson (Eds.).
Springer, Berlin, Germany (2005), pp. 49–74.

[DFMPS04] DE FLORIANI L., MAGILLO P., PUPPO E., SOBRERO D.:
A multi-resolution topological representation for non-manifold
meshes. Computer-Aided Design 36, 2 (2004), 141–159. Solid
Modeling and Applications.

[DHKS13] DEY T. K., HIRANI A. N., KRISHNAMOORTHY B.,
SMITH G.: Edge contractions and simplicial homology. ArXiv
e-prints:1304.0664, April 2013.

[DHPC10] DE FLORIANI L., HUI A., PANOZZO D., CANINO D.: A
dimension-independent data structure for simplicial complexes.
In Proceedings of the 19th International Meshing Roundtable,
IMR 2010 (2010), S. M. Shontz (Ed.), Springer, pp. 403–420.

[DMFC12] DABAGHIAN Y., MÉMOLI F., FRANK L., CARLSSON G.:
A topological paradigm for hippocampal spatial map formation
using persistent homology. PLoS Computational Biology 8, 8
(August 2012), e1002581.

[DPS*13] DONATO I., PETRI G., SCOLAMIERO M., RONDONI L., VAC-
CARINO F.: Decimation of fast states and weak nodes: Topological
variation via persistent homology. In Proceedings of the Euro-
pean Conference on Complex Systems 2012 (Cham, 2013), T.

Gilbert, M. Kirkilionis and G. Nicolis (Eds.), Springer Interna-
tional Publishing, pp. 295–301.

[DS18] DEY T. K., SLECHTA R.: Edge contraction in persistence-
generated discrete Morse vector fields. Computers & Graphics
74 (2018), 33–43.

[dSG07] DE SILVA V., GHRIST R.: Homological sensor networks.
Notices of the American Mathematical Society 54 (2007), 10–19.

[Ede87] EDELSBRUNNER H.: Algorithms in Combinatorial Geometry.
Springer, Berlin, Heidelberg, 1987.

[ELZ02] EDELSBRUNNER H., LETSCHER D., ZOMORODIAN A.: Topo-
logical persistence and simplification. Discrete & Computational
Geometry 28, 4 (2002), 511–533.

[EM94] EDELSBRUNNER H., MÜCKE E. P.: Three-dimensional alpha
shapes. ACM Transactions on Graphics 13, 1 (January 1994),
43–72.

[Fel19] FELLEGARA R.: Stellar tree: A framework for the repre-
sentation and analysis of high dimensional unstructured data.
https://github.com/UMDGeoVis/Stellar_tree, 2019. Online Ac-
cessed June 2019.

[FIDF19] FUGACCI U., IURICICH F., DE FLORIANI L.: Computing dis-
crete Morse complexes from simplicial complexes. Submitted to
Graphical Models 103 (2019), 101023.

[FWD17] FELLEGARA R., WEISS K., DE FLORIANI L.: The Stellar tree:
A compact representation for simplicial complexes and beyond.
ArXiv e-prints:1707.02211, 2017.

[GGK02] GOTSMAN C., GUMHOLD S., KOBBELT L.: Simplification
and compression of 3D meshes. In Tutorials on Multiresolution
in Geometric Modelling. G. Farin, H.-C. Hege, D. Hoffman, C.
R. Johnson, K. Polthier, A. Iske, E. Quak and M. S. Floater.
Springer, Berlin, Germany (2002), pp. 319–361.

[GLLR11] GURUNG T., LANEY D., LINDSTROM P., ROSSIGNAC J.:
SQuad: Compact representation for triangle meshes. In Com-
puter Graphics Forum (2011), vol. 30, Wiley Online Library,
pp. 355–364.

[GR09] GURUNG T., ROSSIGNAC J.: SOT: A compact representation
for tetrahedral meshes. In SPM ’09: Proceedings SIAM/ACM
Geometric and Physical Modeling (San Francisco, USA, 2009),
pp. 79–88.

[GR10] GURUNG T., ROSSIGNAC J.: SOT: Compact Representation
for Triangle and Tetrahedral Meshes. Tech. Rep. GT-IC-10-01,
College of Computing, Georgia Institute of Technology, Atlanta,
GA, USA, 2010.

[GUD18] Geometric Understanding in Higher Dimensions
(GUDHI), 2018. http://gudhi.gforge.inria.fr/. Online Accessed
June 2019.

[Hau94] HAUSMANN J.: On the Vietoris-Rips Complexes and a Co-
homology Theory for Metric Spaces. Publications internes de la

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

R. Fellegara et al. / Efficient Simplification of Simplicial Shapes 259

Section de mathématiques de l’Université de Genève. Université
de Genève-Section de mathématiques, 1994.

[HM91] HELD G., MARSHALL T.: Data Compression; Techniques
and Applications: Hardware and Software Considerations. John
Wiley & Sons, Chichester, 1991.

[ID17] IURICICH F., DE FLORIANI L.: Hierarchical Forman triangu-
lation: A multiscale model for scalar field analysis. Computers
& Graphics 66 (2017), 113–123. Shape Modeling International
2017.

[Iur16] IURICICH F.: IA∗: An indexed-based data structure with adja-
cencies for encoding simplicial complexes, 2016. https://github.
com/UMDGeoVis/IAstar. Online Accessed June 2019.

[Nie97] NIELSON G. M.: Tools for triangulations and tetrahedraliza-
tions and constructing functions defined over them. In Scientific
Visualization: Overviews, Methodologies and Techniques. G. M.
Nielson, H. Hagen and H. Müller (Eds.). IEEE Computer Society,
Silver Spring, MD (1997), Chapter 20, pp. 429–525.

[OPT*17] OTTER N., PORTER M. A., TILLMANN U., GRINDROD P.,
HARRINGTON H. A.: A roadmap for the computation of persistent
homology. EPJ Data Science 6, 1 (2017), 1–38.

[PBCF93] PAOLUZZI A., BERNARDINI F., CATTANI C., FERRUCCI V.:
Dimension-independent modeling with simplicial complexes.
ACM Transactions on Graphics (TOG) 12, 1 (1993), 56–102.

[PH97] POPOVIĆ J., HOPPE H.: Progressive simplicial complexes.
In SIGGRAPH ’97: Proceedings of the 24th Annual Conference
on Computer Graphics and Interactive Techniques (New York,
NY, USA, 1997), ACM Press/Addison-Wesley Publishing Co.,
pp. 217–224.

[PS97] PUPPO E., SCOPIGNO R.: Simplification, LOD and multireso-
lution: Principles and applications. In European Association for
Computer Graphics Conference (1997).

[RSS01] ROSSIGNAC J., SAFONOVA A., SZYMCZAK A.: 3D compression
made simple: Edge-breaker on a corner table. In Proceedings
Shape Modeling International 2001 (Genova, Italy, May 2001),
IEEE Computer Society.

[Sam06] SAMET H.: Foundations of Multidimensional and Met-
ric Data Structures. The Morgan Kaufmann Series in Computer
Graphics and Geometric Modeling. Morgan Kaufmann, Erschei-
nungsort nicht ermittelbar, 2006.

[SHPW17] SODERGREN T., HAIR J., PHILLIPS J. M., WANG B.: Visual-
izing sensor network coverage with location uncertainty. ArXiv
e-prints:1710.06925, October 2017.

[SLA15] SALINAS D., LAFARGE F., ALLIEZ P.: Structure-aware mesh
decimation. Computer Graphics Forum 34 (2015), 211–227.

[TTT06] TOMITA E., TANAKA A., TAKAHASHI H.: The worst-case time
complexity for generating all maximal cliques and computational
experiments. Theoretical Computer Science 363, 1 (2006), 28–
42.

[WRK*10] WICKE M., RITCHIE D., KLINGNER B. M., BURKE S.,
SHEWCHUK J. R., O’BRIEN J. F.: Dynamic local remeshing for
elastoplastic simulation. ACM Transactions on Graphics 29, 4
(July 2010), 1.

[Zom10a] ZOMORODIAN A.: Fast construction of the Vietoris-Rips
complex. Computers & Graphics 34, 3 (2010), 263–271.

[Zom10b] ZOMORODIAN A.: The tidy set. In SoCG ’10: Proceed-
ings of the 2010 Annual Symposium on Computational Geom-
etry (New York, New York, USA, June 2010), ACM Press,
p. 257.

[ZQC*14] ZHU B., QUIGLEY E., CONG M., SOLOMON J., FEDKIW

R.: Codimensional surface tension flow on simplicial com-
plexes. ACM Transactions on Graphics 33, 4 (July 2014),
1–11.

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

