Simplifying morphological representations of 2D and 3D scalar fields

Abstract

We describe a dual graph-based representation for the ascending and descending Morse complexes of a scalar field, and a compact and dimension-independent data structure based on it, which assumes a discrete representation of the field as a simplicial mesh. We present atomic dimension-independent simplification operators on the graph-based representation. Based on such operators, we have developed a simplification algorithm, which allows generalization of the ascending and descending Morse complexes at different levels of resolution. We show here the results of our implementation, discussing the computation times and the size of the resulting simplified graphs, also in comparison with the size of the original full-resolution graph.

Publication
19th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, ACM-GIS 2011, November 1-4, 2011, Chicago, IL, USA, Proceedings