

matched representations and generalizations, inconsis-
tencies in representation, equivalent representations or
other forms of dependencies. We discuss techniques for
mapping a user’s query from one system to the infor-
mation from the knowledge base of another system, to
produce a modified query. In order to achieve this me-
diation, so that query processing is interoperable, and
knowledge is shared, we must take advantage of the
knowledge in each CR and capture the heterogeneous
mapping information among multiple CRs in a merged
canonical representation (MCR).

Query processing techniques have not always been suc-
cessful in building intelligent interoperable interfaces.
Information is often stored as ad hoc rules and may be
used when answering queries but the user has no insight
into how or why the rules were used. The canonical form
formalizes the knowledge needed to modify queries or
generate new queries. We use an example of translating
queries from an object schema to a relational schema to
illustrate typical knowledge that must be represented in
some canonical form. Modern theories in the field of ma-
chine understanding and translation of language bring
much to bear on the issues that are relevant to developing
a mapping between the input query representation (KP)
and the underlying data/knowledge base representation
(KS), (and wvice versa). The development of a single
merged canonical representation for the current problem
is analogous to the task of developing an interlingue or
language-independent form by machine-translation re-
searchers (see, e.g., Dorr (1987, 1990, 1993)). Thus, the
techniques we develop for solving these problems have
been influenced from techniques that have been success-
fully applied in these fields of research.

This paper is organized as follows: section 2 presents
example scenarios for the two problems in providing
an intelligent interface and providing interoperability
among multiple knowledge servers. Section 3 introduces
the use of a canonical representation (CR) and a merged
canonical representation (MCR) to solve these two prob-
lems. Section 4 uses an example of mapping objects and
attributes between an object schema and equivalent re-
lational schema to illustrate the heterogeneous mapping
(het-map) information that must be represented in the
MCR . in some canonical form. Section 5 uses an ex-
ample XSQL-like query to illustrate the knowledge that
must be extracted from a query and represented in a
canonical form. Section 6 uses a high-level language
F-logic (as formulated by Kifer and Lausen (1989) and
Kifer et al. (1990)) to represent the heterogeneous map-
ping (het-map) and query transformation information,
as a set of declarative rules, in the canonical form. The
approach i1s summarized in section 7. We compare our
work with related research in the area, and we discuss
future research.

2 Examples of Transforming Queries
from Object to Relational Schema

As an example of our approach to query transforma-
tion, we use a sample object schema (appendix A) and
three equivalent relational schema (appendix B) to pro-

462

vide examples of query transformation, going from ob-
ject schema to relational schema. In the object schema of
appendix A, each node is an object. The broken arcs rep-
resent an inheritance hierarchy among the objects, and
the direction of the arrow represents a class to sub-class
relationship. A solid arc represents a named attribute
of some object which is itself another object. For exam-
ple, an arc (labeled LeasedVehicle) between the objects
Company and Vehicle, corresponds to LeasedVehicle, an
attribute of each object Company, referring to some ob-
ject Vehicle.

Since the schema contain equivalent information, we
can focus on the problem of extracting the relevant in-
formation from the source query and using relevant map-
ping information from the different schema to produce
a transformed query. The source query for the object
schema is an XSQL-like query, i.e., an extension of SQL
to access object data bases. The XSQL queries we use
are fairly simple and only differ from SQL queries in
the query path expressions in the where clause. We will
describe them briefly and refer the reader to Kifer ef al.
(1992) for details of the language. An XSQL query takes
the following form, where X, Y and Z are objects Com-
pany, GasolineBoat and Company, respectively:

Query 1
Select 7
from Company X, GasolineBoat Y, Company Z ---
where X.LeasedVehicle[Y].Manufacturer[Z] - - -

This query, when applied to the object schema of ap-
pendix A, selects all objects Z, of Company, such that
each object X, of Company, has an attribute Leased Vehi-
cle which is an object Y (specified in the where clause).
Further, each Y is a GasolineBoat (specified in the from
clause), and the object to be retrieved, Z, is a Company
which is the Manufacturer of each GasolineBoat Y (spec-
ified in the where clause). As seen in the object schema
of appendix A, GasolineBoat does not have an attribute
Manufacturer and has to inherit this from the class Ve-
hicle, in the related class hierarchy.

There are three relational schemas in appendix B. In
RDBMS 1, relations R1 and R2 have all the Company
and YachtClub information, R3 has all the Auto infor-
mation, (DieselAuto and GasolineAuto) and R4 has all
the Boat information (DieselBoat and GasolineBoat). In
RDBMS 2, R1 and R2 are as before. R3 has the Model
and Manufacturer information on each Vehicle (Diesel-
Boat, Diesel Auto, GasolineBoat, GasolineAuto) and R4
and R5 have the remaining information on Auto and
Boat, respectively. RDBMS 3 differs from RDBMS 2 in
that the Model and Manufacturer information in R3 is
not identified based on the Vehicleld information, but
is identified based on Engine information. The three
schemas are fairly straightforward representations for the
object schema. However, the subtle differences in their
structure must be reflected in the appropriate mappings,
to generate equivalent queries.

To obtain an SQL query in RDBMS 1, which is equiva-
lent to Query 1, for those manufacturers of GasolineBoat
leased by some company, we use the knowledge that the
Vehicleld values in relation Rl (for the leased vehicles)
may correspond to either boats or automobiles. These

Vehicleld values refer to information in R4, which in-
cludes Manufacturer information on both GasolineBoat
and DieselBoat. We must select only those tuples in R4
corresponding to GasolineBoat. This is indicated by the
value of the Type attribute. To obtain the manufacturer
information we need relation R4 which has only boats.
An equivalent SQL query would be as follows:

Query 2
Select Manufacturer
from R1 R4

where Rl.LeasedVehicle = R4.Vehicleld and
R4.Type = GasolineBoat
To obtain a query equivalent to Query I in RDBMS
2, we use the knowledge that the Vehicleld values in
R1 may be either boats or automobiles. To identify the
boats, we refer to R5 which has information on Gaso-
lineBoat and DieselBoat. However, R5 does not have any
Manufacturer information. Manufacturer information is
in relation R3, but this relation includes information for
both boats and automobiles. An equivalent query would
be as follows:
Query 3
Select Manufacturer
from R1 R3 RS
where R1.LeasedVehicle = R5.Vehicleld and
R5.Type = GasolineBoat
and R5.Vehicleld = R3.Vehicleld
The difference between RDBMS 2 and RDBMS 3 is
that the Manufacturer information in R3 is not identi-
fied based on the Vehicleld but on the Engine. This will
change just the where clause in Query 3 such that re-
lations R3 and R5 are joined on Engine, and we do not
give this query here. Suppose we now consider a query
that is structurally similar to Query 1, wrt the object
schema, as follows:

Query 4
Select Z

from YachtClub X, GasolineBoat Y, Company Z - - -
where X.OwnedVehicle [Y].Manufacturer [Z] ---

Although Query 4 is similar to Query 1, from the ob-
Ject schema of appendix A, we know that all OwnedVe-
hicles must be in GasolineBoat. Consequently, VehicleId
values in relation R2 refer only to GasolineBoat and we
can use these values to directly identify the Manufac-
turer information from R3. Thus, in RDBMS .2, unlike
the previous Query 3, we do not need R5 to identify the
GasolineBoat, and we can obtain Manufacturer from just
R2 and R3 as follows:

Query 5
Select Manufacturer
from R2 R3

where R2.LeasedVehicle = R3.Vehicleld

However, in RDBMS 3, although we have the knowl-
edge that the Vehicleld values in R2 refer only to Gaso-
lineBoat, in R3, the Manufacturer information cannot
be obtained based on the value of the Vehicleld. We
need the Engine information for the GasolineBoat. We
use the Vehicleld values in R2 to identify GasolineBoat
in R5, and use the Engine information to obtain Manu-
facturer information from R3. Thus, we cannot use the
knowledge that all OwnedVehicles are in GasolineBoat,
during translation. The corresponding query will be very
similar to Query 3, and is as follows:

463

Project

time frame (completion dates, schedules)
KS, personnel needed (skills, experience)
cost estimates (to charge for a project)
components needed (may be recursively dehned)
component usage

Personnel Employment
skills
salary
current work
availability
KS, | Personnel Work History
expernience (histoncal)
salary (historical)
skills
availability

Components
cost estimates (for purchase)
availability (inventory, location)
KS; METHOD rehability
(dependent on usage, time frame, project,..)
subcomponents (may be recursively defined)
METHOD equivalent components

(dependent on usage, project, reliability ...)
Information Encoded in Three Knowledge

Figure 2:
Servers

Query 6
Select Manufacturer
from R2 R3 RS
where R2.LeasedVehicle = R5.Vehicleld and
R5.Engine = R3.Engine

Although the translation to obtain the SQL queries
appears to be straightforward, it is clear that the trans-
lation process must identify the relevant knowledge from
(1) the source XSQL queries, (2) the object schema (3)
the equivalent relational schema, and (4) the mapping in-
formation between these schema. Our research addresses
the problem of defining an appropriate canonical repre-
sentation which will assist in the task of obtaining this
knowledge from the queries and schemas as well as be
in a form that supports the translation process. The
importance of such a canonical representation increases,
as the queries and the mappings increase in representa-
tional power.

We now consider an example of sharing information
among three knowledge servers, KS;, KS; and KSs,
shown in figure 2. The servers provide information on
Projects, Personnel and Components, respectively. We
do not make the assumption that the servers share equiv-
alent knowledge. Thus, unlike in the previous example,
there is no direct mapping among equivalent objects;
however, mapping information is needed to facilitate in-
formation sharing.

Suppose KP; requests specific information on the re-
liability of a single component. KP3 would return one
or more reliability figures. However, the KP3/KS3 pair
may have the knowledge that there is a dependency be-
tween these reliability figures and the particular usage of
this component, in a project in KS;. Alternately, sup-
pose that these reliability figures vary as components are
updated, and thus depend on the time frame of a project
in KS;. Ideally, we would return a modified query that

indicates that the usage in a project or the time frame
is needed from KS;, to obtain the appropriate reliability
figures.

Suppose a query posed by KP;/KS; attempted to
identify the employees needed to staff a particular
project. This information must be obtained from the
KP3/KS; pair. There are two ways of identifying per-
sonnel here, either based on work history or on present
employment. If personnel are identified on the basis of
their skills in the Personnel Work History relation in
KS3, then for these employees one must determine their
employment status, availability and salary. This may
require further access to the Personnel Employment re-
lation in KS,. Further, their availability may depend
on the status of some project on which they are cur-
rently employed, as specified in KS;. This knowledge
that is used to modify the queries does not belong in
the category of structural mappings between equivalent
objects in different schemes, as in the previous example.
However, this information must be represented in some
canonical form for use during query transformation. Al-
though this is not discussed in this paper, we included
this example to describe the variety of information that
must be encoded.

3 Using Canonical Representations in
Query Transformation

Assuming that some appropriate canonical form has
been identified, Figure 3 illustrates how the individual
CRs and the composite MCR (obtained from the merg-
ing of possible mappings among the individual CRs) are
used. The simpler problem involves a query to a single
knowledge server KS; and so uses information from a sin-
gle canonical representation CR; serving that KP;/KS;
pair. It involves a mapping specified along some appro-
priate horizontal axis of figure 3. The result of trans-
forming the query using the CR; is a modified query,
Q.

The solution to the problem of interoperable query
processing and knowledge sharing involves the mapping
into, and out of, the MCR specified along the vertical
axis of figure 3. The input is a query Q; which is under-
stood by a single CR; that represents a KP;/KS; pair.
However, answering this query requires understanding
and accessing information from the other KP/KS pairs
via the MCR. Thus, we generate appropriate query forms
for the other KP/KS pairs, using the knowledge in the
MCR and the corresponding CRs. The output is a mod-
ified query, Q}, relevant to the particular pair, KP; /KS;,
as well as other queries Q;-, Qj, Qi, etc. relevant to the
other CRs. Thus, to provide interoperability, we make
use of the heterogeneous mapping (het-map) information
in the MCR as well as the CRs.

4 Mapping Information for Query
Transformation Among
Heterogeneous Models

There are several components involved in the query
transformation process. One important component is

464

ERalKSs BRalXPa BhalKea

Settings Settings Settings
1 [i
Y 4 Y CR = Canonical Representation
MCR = Merged Canonical Representa
MCR

Q = Query
Q' = Modified Query

KP1/KS$1
Figure 3: Query Mapping and Transformation Using
Canonical Representations

KP2/KS2 KP3/KS3

the heterogeneous mapping (het-map) information. In
its simplest form, this provides a structural mapping
among entities in the canonical form. If we consider
the particular case of transforming an XSQL-like query,
against an object database, into an SQL-like query
against a relational database, then this heterogeneous
mapping (het-map) will provide, at the least, for each
attribute of an object, the corresponding relation from
which this attribute may be retrieved.

Clearly, the exact nature of the heterogeneous map-
ping information is largely determined by the different
data models. One of the goals of our research is to de-
termine an appropriate canonical representation so that
this information may be represented, independent of the
particular data models. In this paper, however, we will
limit ourselves to an object model and a relational model,
and use the example schema to identify example map-
pings and the rationale. We do not imply that these
examples are complete. We describe this heterogeneous
mapping (het-map) information in English, and in a pos-
sible canonical form (based on a high-level logic) in a
later section.

Each of the following cases corresponds to a different
scenario for mapping between an object schema and a
relational schema. The scenarios are straightforward. In
each case, we assume that in the object schema, we are
interested in obtaining values for some attribute corre-
sponding to a particular object, a start sbject (SO). If
the attribute is not actually structurally associated with
the start object, then it must be associated with an end
object (EO) and there will be a class hierarchy associat-
ing these two objects. Finally, we may also refer to path
objects (PO) occurring in the path between the start
and end objects. The task of extracting the SO, EO
and PO information from an example XSQL-like query
is discussed in the next section. In the corresponding re-
lational schema, the heterogeneous mapping information
must identify the appropriate tuples of one (or more) re-
lation(s) and the corresponding attribute(s) involved. As

we mentioned earlier, we only consider the simple case of
a single start object (SO) and attribute. Extensions to
include multiple attributes, and combining information
among multiple objects, when the attribute of an object
is itself an object is discussed by Raschid et al. (1993).

Figure 4 summarizes the different cases that are to be
discussed in detail in this section.

Case 1

Transformation depends on start object SO

Case 1.1 Use S0, attribute to pro-
duce a list {(relation name
RN, attribute name AN)}

Case 1.2 Same as 1.1 except that S0
is also used to identify a
subset of tuples of relation
RN. Produce a list {(rel
name RN, attr name AN,
selection criterion for RN

based on S0)}

Case 2

Transformation depends on end object EO

Case 2.1 Use EO, attribute to pro-
Does not depend duce alist { (relation name
on S0. RN, attribute name AN)}
Case 2.2 Same as 2.1 except that S50

is also used to identify a
subset of tuples of relation
RN. Produce a list {(rel
name RN,attribute name
AN, selection criterion for

RN based on S0)}

Also depends on
start object SO.

Case 2.3 Same as 1.2 except that
Does not depend EO0 is used instead of SO0
on S0. to identify a subset of tu-
ples of RN. Produce a list
{(RN, AN, selection crite-
rion for RN based on E0)}
Case 2.4 Same as 2.3 except that

S0 is also used to identify
a subset of RN. Produce
a list {(RN, AN, selection
criterion for RN based on
S0 selection criterion for
RN based on E0)}

Also depends on
start object S0.

Case 3

Transformation depends on path objects PO in
path between S0 and E0

Case 4 | Most general case where attribute of object is
an object
Figure 4: Cases for Mapping Between an Object Schema

and a Relational Schema

Case 1 - Depends on SO

In this scenario, the organization of the correspond-
ing relational schema dictates that the transforma-
tion is dependent only on the start object SO, (and
is independent of the end object EO or path ob-
jects PO, if any). Thus, we obtain the correct map-
ping directly from the (start object, attribute) pair.
Consider an example pair from the object schema
of appendix A, say (DieselAuto, Model). There are

two possibilities, as follows:

Case 1.1 — Depends on SO

In this first case, the het-map uses (SO, attr-SO) to

465

obtain a relation name RN and an attribute name
AN. The attribute AN must be an attribute of the
relation RN. All tuples in RN correspond to the
start object SO, and attribute AN has the values
for attribute attr-SO, e.g., the values for Model for
DieselAuto. For example, if there is a relation con-
taining information on all diesel autos, then the het-
map transformation, may produce the following re-
lation and attribute pair:

(RN = RelDieselAuto, AN = AttrModel)

Instead of a single pair, het-map may produce a list
of {(RN, AN)}. For example, if the information
on diesel autos were stored in separate relations,
for hatchbacks and sedans, this would produce the
following:

{(RN = RelDieselSedan, AN = AttrModel), (RN =
RelDieselHatchback, AN = AttrModel)}.

Case 1.2 — 50 provides an additional constraint

In this second case, the het-map information for
(SO, attr-SO) provides a relation RN, and an at-
tribute AN of that relation RN, corresponding to
the attribute attr-SO. However, all tuples in RN do
not correspond to the start object SO. Thus, SO
provides an additional selection criterion, to select
those tuples in relation RN which actually corre-
spond to SO. Attribute AN-SO is a second attribute
of relation RN and tuples of RN which are in a range
of specified values for this attribute, AN-SO, corre-
spond to the tuples for object SO. The attribute
values of AN then correspond to the values for at-
tribute attr-SO, for the selected tuples in RN.

Suppose DieselAuto and DieselBoat are stored to-
gether in a single relation DieselVehicle. Then, an
example of the het-map transformation is to pro-
duce the following:

(RN RelDiesel Vehicle, AttrAN-SO, range-of-
values(for DieselAuto) in AttrAN-SO

= {DieselAuto}, AN = AttrModel)

Suppose instead that all DieselAuto objects are ac-
tually identified by whether they are hatchbacks or
sedans in the relation DieselVehicle. Then het-map
will produce the following:

(RelDieselVehicle, AttrAN-SO, range-of-values(for
DieselAuto) in AttrAN-SO

= {HatchBack, Sedan}, AttrModel)

Case 2 - Depends on EO
For this scenario, the het-map information will in-

dicate that the transformation is dependent on the
end object, EOQ. Suppose we consider the start ob-
ject, attribute pair, (DieselAuto, Model). The at-
tribute Model is actually structurally associated
with the end object (EO) Vehicle. The het-map in-
formation may indicate that the relational schema is
such that the corresponding relations and attributes
are dependent on (Vehicle, Model), as opposed to
(DieselAuto, Model). This is the scenario in Cases
2.1 and 2.3. Further, it is possible that the SO,
DieselAuto, is a further constraint on the relation
(indicating further selection of some appropriate tu-

ples which are actually diesel autos). This is the
situation in Cases 2.2 and 2.4.

Case 2.1 — Depends on EO

This is similar to Case 1.1, and het-map will use the
(EO, attribute) pair of (Vehicle, Model), instead of
the (SO, attribute) pair of (DieselAuto, Model), to
obtain a list of relation attribute pairs, {{RN, AN)},
for example, (RelVehicle, AttrModel). Such a situ-
ation will result when all the vehicles in the Vehicle
relation also happen to be diesel autos, and so there
is no necessity to select only a subset of those tu-
ples from the Vehicle relation that correspond to
DieselAuto.

Case 2.2 — SO provides an additional constraint

This corresponds to the SO, say Auto, being an
additional constraint, in a variation of the previ-
ous case. In other words, the relational schema is
such that the relation and attribute names are de-
termined based on the EO, for example Vehicle, but
all the tuples in this relation do not necessarily cor-
respond to the SO, Auto.

Suppose we consider the set of possible path objects
between a start object, say Auto and an end object,
say Vehicle. They are as follows:

< Auto, DieselAuto, DieselVehicle, Vehicle >
< Auto, GasolineAuto, GasolineVehicle, Vehicle >

The het-map will use (Vehicle, Model)} and (Auto,
Model) and produce the following, indicating that
only some of the tuples in the relation correspond to
the SO, Auto. Auto provides an additional selection
criterion based on the values of some attribute in the
relation, as follows:

(RelVehicle, AttrAN-SO, range-of-values(for Auto)
in AttrAN-SO
= {DieselAuto, GasolineAuto}, AttrModel).

Case 2.3 — EO provides additional constraint

This is similar to Case 1.2, except that the end ob-
ject EO is used to identify the relation and attribute.
However, all tuples in the relation do not corre-
spond to EO, and there is an additional selection
constraint on that relation, to identify the tuples
corresponding to EO. Thus, the het-map transfor-
mation for the (EQ, attribute) pair will produce a
list of

{(RN, AN-EO, range-of-values(for EO) in AN-EO,
AN}

Suppose we consider a situation where all the Vehi-
cle data are stored with other objects, in a relation
Allltems. There is an attribute which has an iden-
tifying value, say Vehicle, to identify all vehicles in
the relation Allltems. In addition, all the vehicles
in that relation happen to be autos. An example is
as follows:

(RelAllltems, AttrAN-EO, range-of-values(for Vehi-
cle) in AttrAN-EO = {Vehicle},

AttrModel).

Case 2.4 — Both SO and EO provide additional con-

straint

466

This case is similar to 2.3, in that het-map uses
the EO and attribute to obtain a relation and at-
tribute pair. In addition, there is a selection con-
straint which restricts some of the tuples of the re-
lation, based on an attribute, AN-EO, to identify
all the tuples corresponding to the EO. Finally, the
start object, SO, also provides an additional selec-
tion constraint, based on attribute AN-SO, to iden-
tify the tuples corresponding to SO. Het-map will
produce the following:

{(RN, AN-EO, range-of-values(for EO) in AN-EOQ,
AN-SO, range-of-values(for SO) in AN-SO, AN)}.
This corresponds to the case where all Vehicle data
are stored in a relation Allltems with other items.
An attribute with value Vehicle identifies the vehi-
cles in this relation. However, all the vehicles do
not correspond to the object DieselAuto. We need
to identify the tuples corresponding to objects that
are in both Vehicle and DieselAuto. To explain the
need for two selection constraints based based on
EO and SO, note that there may be multiple class
hierarchies associated with Vehicle. DieselAuto may
only participate in one such hierarchy. Similarly,
Diesel Auto may participate in other hierarchies that
do not include Vehicle. An example is as follows:

(RelAllltems, AttrAN-EO, range-of-values(for Vehi-
cle) in AttrAN-EO = {Vehicle},

AttrAN-SO, range-of-values (for Auto) in AttrAN-
SO = {DieselAuto, GasolineAuto},

AttrModel).

We omit the discussion of Cases 3 and 4 and refer
the reader to Raschid et al. (1993).

5 Extracting Query Transformation
Information from an XSQL query

In this section we consider parsing an XSQL-like query
to extract information relevant to the query transforma-
tion process. We assume that similar information can
be extracted from queries in other languages. An XSQL
query is of the following form:

Select
from object varname, object varname - - -
where qpe

The query path ezpression (qpe) in the where clause of
the query is of the following form:

X.attr-X [Y].attr-Y [Z].attr-Z [A).attr-A [B] ---

where X, Y, Z, etc., are object classes, attr-X, attr-Y,
etc., are attribute labels, and X.attr-X [Y] is read as the
attribute atir-X for the object X, is an object Y.

The XSQL query and, in particular, the qpe of the
query is resolved against the object schema, represented
in F-logic in our case. A procedure Extract will oper-
ate on the list of objects in the from clause of the query,
the gpe of the query, and the schema. The output will
be a set of query path structures (qps). The set of qps
obtained from an XSQL query will correspond to the
mapping information from this query, in the canonical
representation (CR). The gps in the CR will be used in

Extract: Extracting information from X.attr-X[Y].attr-Y[Z]

Ezxtract, Object type of Y known in from
Extract;; | X.attr-X returns object Y’ and
Y=Y
Extract; » | X.attr-X returns object Y’ and
Y' £Y
Eztract, Object type of Y not known in from

FEzxiractz,; | X.attr-X returns some object
Y’ and Y’ has some sub-
class(es) Y which have at-
tribute attr-Y

Ezxtracty;; | X.attr-X returns some object

Y' but nonme of the sub-
class(es) Y of Y’ has attribute
attr-Y. However, Y and Y’
may inherit attribute attr-Y

Figure 5: Summary of the Extract Procedure

the next step, which is the mapping between data mod-
els, using the merged canonical representation (MCR),
for the purpose of generating some translated query. For
simplicity, we consider an XSQL query with a single qpe
in the where clause.

Each qgps structure in the CR is as follows:

[start-object,

list-type = {sub | sup},

< list >,

end-object,

attribute,
return-object(end-object,attribute)]

In each gps structure, the list-type indicates the exis-
tence of a path (based on some class hierarchy) between
the objects start-object, say X, and end-object, say X',
in the F-logic schema. The direction of traversal of this
hierarchy is noted by sub or sup. This is followed by
the list of objects that are traversed in this path. The
start-object and end-object, X and X’, may be explic-
itly specified in the corresponding XSQL query or they
are obtained from the F-logic schema, by the Extract
procedure. The end-object is a particular object X’ with
attribute attr-X as specified in the qpe. Finally, we also
determine the return-object that is returned based on X’
and attr-X. This return object may not be identical to
the Y specified in the from clause. If indeed it is differ-
ent from Y, then Extract must continue and generate
further qps until the complete path from say X to Y is
determined. There may be several qps for each object
identified as start-object. Note that this start-object is
Jjust the start of a list of objects in the qpe, and is differ-
ent from the start object SO, mentioned in the het-map
information, in the previous section. Figure 5 summa-
rizes the operation of the procedure Extract. Readers
are referred to Raschid et al. (1993) for details.

6 Query Transformation and
Heterogeneous Mapping Information

The information on mapping between the different
schema, corresponding to heterogeneous data models,
and the rules for query transformation, must be rep-
resented in a high level language. We chose the F-logic

467

language as formulated by Kifer and Lausen (1989) and
Kifer et al. (1990) for a number of reasons. We briefly
present the syntax and semantics of F-logic and then
describe the data structures and a few of the transfor-
mation rules.

6.1 Syntax of F-logic

We borrow this brief description from Lefebvre et al
(1992). In F-logic, the instance term o : ¢ means that
the object o is an instance of class ¢. A data term
o[m@a,,---,a, — v;m'Q@ay,---,a, « {v',v”}] means
that the value of the functional method m with argu-
ments a; to a, for the object o is a set containing the
values v/ and v”. If a method m has no arguments, “@”
will be omitted. The symbol < indicates a set-valued
method.?2 Note that other values could also be mem-
bers of this set, and that the expression above does not
restrict the value of m’ for o to be {v/,v"}; it only in-
dicates some of the values of the corresponding set. An
object can be denoted by a constant, or a term. For
example, dept(cs) is a valid object identifier. An atomic
data term is a data term referring to only one method.
Notational conventions allow us to write o[m’ « v] in-
stead of o[m’ — {v}] for a single element of a set-valued
method; the expression o[m — v;n — v'] is equivalent
to o[m — v] A o[n — v']; the expression o : ¢[m — v] is
equivalent to o : ¢ A o[m — v].

An F-logic program consists of a set of data decla-
rations(data or instance terms) and a set of deduction
rules. A deduction rule has a head, which is a data term,
and a body, which is a conjunction of data and instance
terms. Disjunction and negation are allowed in the body
of rules. Deduction rules can be used in a way similar
to Datalog rules(or Prolog clauses), i.e., the head of a
rule defines a derived method, the value of which can be
found by evaluating the body.

6.2 Data Structures for Heterogeneous
Mapping and Transformation

We use the following data structures:

MPS[begin-class — X,
list-class « P,
end-class@P — X',
attr-X — A,
return-object@X’, A — Y]

HT-mapping(X, D)
[reachable-attr «— A,
includes —~ X',
mappings «+ map(X, A, D)[rel-attr — (R, Z)],
constraints «constraint(R, X)
[attr — AN-C, range — S]]

CR-query(MPS, D)
[rel-attr — (R, AN),
constraints < (R, AN-C,S),
join-path@P — L]

A mapping path structure (MPS) represents the se-

mantics extracted from a simple XSQL query path strue-

2This symbol is different from the one used in the original
paper.

begin-class X end-class X’
reachable | constr. | includes | reachable | constr.
-attr ~attr

1.1 Y N

1.2 Y Y

2.2 N Y Y N
2.4 N Y Y Y
2.1 N N Y Y N
2.3 N N Y Y Y

3 N N N Y

Figure 6: Decision Table for Heterogeneous Mapping Al-
gorithm

ture (qps), as discussed in the previous section. It has
methods begin-class, list-class, end-class, return-object,
etc., corresponding to the qps structure. The hetero-
geneous mapping (HT-mapping) captures the het-map
information between the object-oriented and relational
schema. Its structure is discussed in detail in the next
section. CR-query corresponds to the transformed query
in the canonical representation (CR). CR~query will be
used to generate the appropriate relational query for a
particular database schema D (the actual generation is
not discussed here). The method rel-attr of CR-query
will return one or more pairs of relation and attribute
names. For each pair that is returned, if there is ad-
ditional selection criteria, then the method constraints
returns the appropriate attribute name and the range of
values for the selected tuples to qualify. The join-path is
a method that provides the join information for the Case
3 of the het-map (not discussed in detail). Other struc-

tures, e.g., lists are omitted. Recall that several possible .

heterogeneous mappings between relational and object-
oriented schema were discussed previously and presented
as several cases. We discuss the canonical representation
of some cases in this section.

6.3 Heterogeneous Mapping Algorithm and
F-logic Rules

The heterogeneous mapping and transformation algo-
rithm that we present here is intended to provide a fla-
vor of the types of transformations that can be expressed
and is not intended to represent a complete algorithm for
transforming XSQL queries. It can best be expressed by
the decision table in figure 6, where each row corresponds
to one of the sub-cases of possible het-map transforma-
tions discussed previously.

Information extracted from the XSQL query, in the
form of qps are represented by the MPS. This and the rel-
evant mapping information, represented in HT-mapping,
are used in the decision procedure. The MPS encodes a
decision procedure based on the begin class X, end class
X/, and the attribute of interest A specified in the XSQL
query. For both X and X’, HT-mapping has the relevant
mapping information for a particular database D, in this
case each sample database is a relational database.

Each row in the table corresponds to one of the sub-
cases of possible het-map transformation previously dis-
cussed. We note that case 3 is a fairly complex case
involving a sequence of joins in the relational query and
the details are omitted. The decision table is imple-

468

mented using a set of rules in F-logic. These rules occur
in 3 groups. Ident-Rel-Attr is a group of rules which
represents the het-map transformation that provides the
corresponding relation and attribute name in the CR-
query data structure. Sel-Constr is a group of rules
which specifies selection criteria that must first be satis-
fied by the tuples of the relations specified in Ident-Rel-
Attr rules (or the Join-Path rules). Join-Path is a group
of rules which specify relations which must be joined,
corresponding to the more complicated Case 3 of the
het-map transformations that have been discussed. This
third group of rules is not described here.

Case 1.1 is selected when the het-map information,
encoded by MPS and HT-mapping in the canonical rep-
resentation, indicate that given the begin class X, A is
a reachable attribute. In other words, the corresponding
relation and attribute names are directly obtained. The
following F-logic rule in the group Ident-Rel-Attr may
be applied in this case and will provide one or more (re-
lation, attribute) pair(s) in the corresponding CR-query
structure:

CR-query(MPS, D)
[rel-attr — (R, AN)] —
MPS[begin-class — X , attr — A] A
HT-mapping(X, D)[reachable-attr — A,
mappings « map(X, A, D)
[rel-attr «» (R, AN)]]

From our example, an instantiation of this rule for the
pair (DieselAuto, Model) may be as follows:

CR-query(MPS, D)
[rel-attr — (RelDieselAuto, AttrModel)] «—
MPS[begin-class — DieselAuto , attr — Model] A
HT-mapping(Diesel Auto, D)
[reachable-attr — Model,
mappings « map(DieselAuto, Model, D)
[rel-attr « (RelDieselAuto, AttrModel)]]

For Case 1.2, the MPS and HT-mapping indicate that
given the begin class X, A is a reachable attribute. How-
ever, HT-mapping indicates there is an additional selec-
tion constraint that (the tuples corresponding to) X must
satisfy. Thus, in addition to applying the previous rule,
the following rule in the group Sel-Constr must also be
applied. This rule will generate a constraint in the cor-
responding CR-query structure, as follows:

CR-query(MPS, D)
[constraints < (R, AN-C, S)] —
MPS[begin-class — X] A
CR-query(MPS, D)[rel-attr — (R, AN)] A
HT-mapping(X, D)[constraints «— constraint(R, X)
[attr — AN-C, range — S]

If we consider the example from the previous section,
corresponding to Case 1.2, one particular instantiation
for the two rules from Ident-Rel-Attr and Sel-Constr is
as follows:

CR-query(MPS, D)
[rel-attr «— (RelDieselVehicle, AttrModel)] —
MPS[begin-class — DieselAuto , atir — Model] A
HT-mapping(Diesel Auto, D)
[reachable-attr — Model,
mappings < map(DieselAuto, Model, D)
[rel-attr — (RelDieselAuto, AttrModel)]]

CR-query(MPS, D)
[constraints —
(RelDiesel Vehicle, AttrAN-C, {Hatchback, Sedan })] —
MPS|[begin-class — DieselAuto] A
CR-query(MPS, D)
[rel-attr — (RelDiesel Vehicle, Model)] A
HT-mapping(Diesel Auto, D)

[constraints — constraint(RelDieselVehicle, Diesel Auto)

[attr — AN-C, range — {Hatchback, Sedan}]

After this transformation, we see that CR-query for
this particular database and query is as follows:
CR-query(MPS, D)

[rel-attr — (RelDiesel Vehicle, AttrModel)]

[constraints«

(RelDiesel Vehicle, AttrAN-C, {Hatchback, Sedan })]

It should be straightforward to generate a selection
query which selects the values of the attribute AttrModel
from those tuples of the relation RelDieselVehicle such
that the range of values in the attribute AttrAN-C is
{Hatchback, Sedan}. A complete discussion of all the
other cases in the decision table in figure 6 are presented
in Raschid et al. (1993).)

7 Summary

We have proposed the use of a canonical representation
(CR) to address interoperable query processing with het-
erogeneous databases. We use examples of extracting
knowledge from an XSQL-like query and mapping be-
tween heterogeneous schema to illustrate the knowledge
that must be in the CR. We use a high-level declarative
language F-logic, to demonstrate a possible form for the

We now compare our research with related work. Kent
(1991) classifies mismatches in heterogeneous databases
as domain mismatches (discrepancies among data values,
units of measure, data types, etc.) and schema mismatch
(different constructs in the data models representing the
same concept). They use a language called the IPL (Iris
Programming Language) to express integrator functions
to solve the mismatch. They do not address the problem
of query transformation. Semantic heterogeneity, where
discrepancies may occur with the same data model, is
investigated by Krishnamurthy et el. (1991). The goal
of their research is achieving schema integration (trans-
parent to the users) and supporting the ability to update
a multidatabase. The language they propose is an exten-
sion to a Horn language. Our research differs from theirs
in that we consider multiple data models and query lan-
guages. Kim and Seo (1991) provide an exhaustive list of
conflicts that may occur in a multidatabase environment,
expressed in the context of the relational data model.

The research that is closest to our work is described
by Lefebvre et al. (1992) and Qian (1992). Lefebvre
et al. (1992) consider the the problem of interoperable
query processing, but their approach is limited to the
relational data model. F-logic is used to express the
mapping information among multiple relational schema
and to express the algorithm for query transformation.
Our work can be seen as an extension of their approach,
to include heterogeneous models. Qian (1992) suggests
that a language which has minimal representation bias

469

may express mismatch in representation among hetero-
geneous schema. The paper describes an approach to in-
teroperable query processing for different schema based
on the same data model (entity relationship model), but
should be applicable to heterogeneous data models as
well.

Finally, in SIMS (see Arens and Knoblock (1992)), in-
formation sharing is facilitated through using the LOOM
knowledge representation schema to construct a global
schema for each application domain. Queries are pro-
posed against the global schema and the SIMS system
formulates a plan for query evaluation. The sub-queries
are evaluated by LIM (interface modules) which build
LOOM schema. for each of the databases. This research,
too, does not address the issues of query transformation
and interoperable query processing.

Our current research has been limited to equivalent in-
formation resident in heterogeneous servers. We plan to
extend our research to include knowledge of dependen-
cies, constraints, etc. where the information in the CR
may no longer be equivalent among the servers. As an
example, in the LOOM system, a concept is described by
structural characteristics, a classification hierarchy, and
its relationship with other concepts. It will be a chal-
lenge to provide interoperability for a LOOM schema, in
conjunction with relational and object-oriented schema.

8 Bibliography

Arens, Y. and C. Knoblock (1992) “Planning and refor-
mulating queries for semantically-modeled multidatabase
systems,” Proceedings of the International Conference on
Knowledge Management.

Barsalou, T. and D. Gangopadhay (1992) “M(DM): An open
framework for interoperation of multimodel multidatabase
systems,” Proceedings of the International Conference on
Data Engineering.

Dorr, B. (1987) “UNITRAN: A Principle-Based Approach to
Machine Translation,” AI Technical Report 1000, Master
of Science thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology.

Dorr, B. (1990) “Solving Thematic Divergences in Machine
Translation,” Proceedings of the 28th Annual Conference of
the Assoctation for Computational Linguistics, University
of Pittsburgh, Pittsburgh, PA, 127-134.

Dorr, B. (1993) “Interlingual Machine Translation: A Pa-
rameterized Approach,” Artificial Intelligence 63:1&2.

Gardarin, G. and P. Valduriez (1992) “ESQL2: An object-
oriented SQL with F-logic semantics,” Proceedings of the
International Conference on Data Engineering.

Jeusfeld, M. and M. Jarke (1991) “From relational to object-
oriented integrity simplification,” Proceedings of the Sec-
ond International Conference on Deductive and Object-
Oriented Databases.

Kent, W. (1991) “Solving domain mismatch and schema
mismatch problems with an object-oriented database pro-
gramming language,” Proceedings of the International
Conference on Very Large Data Bases.

Kifer, M. and G. Lausen (1989) “F-logic: A higher-order
langnage for reasoning about objects, inheritance and
scheme,” Proceedings of the ACM Sigmod Conference.

Kifer, M., G. Lausen, and J. Wu (1990) “Logical foundations
of object-oriented and frame-based languages,” SUNY at
Stonybrook, TR 90/14.

Kifer, M., W. Kim, and Y. Sagiv (1992) “Querying object-
oriented databases,” Proc. of the ACM Sigmod Confer-
ence.

Kim, W. and J. Seo (December, 1991) “Classifying schematic
and data heterogeneity in multidatabase systems,” IEEE
Computer, pages 12-18.

Krishnamurthy, R., W. Litwin, and W. Kent (1991) “Lan-
guage features for interoperability of databases with
schematic discrepancies,” Proceedings of the ACM Sigmod
Conference.

Lefebvre, A., P. Bernus and R. Topor (1992) “Query trans-
formation for accessing heterogeneous databases,” Joint
International Conference and Sympostum on Logic Pro-
gramming, Workshop on Deductive Databases.

Qian, X. (1992) “Semantic interoperation via intelligent me-
diation,” Personal communication.

Raschid, L., Y. Chang, and B. Dorr (1993) “Query trans-
formation among heterogeneous data models: a prototype
based on F-logic,” In preparation.

A Example Object Schema

Company YachtClub
LeasedVehicle OwnedVehicl
CompanyNamJ Vehicle ClubName
Manufacturer;
Vehicleld
Model
Diesg] Vehicle GasqlineVehicle
DieselBoaf """ *: Diesel Auto ;"""""GasoiineBoat
Y. A4 : A -4
Registration Registration
Engine G a,solineAuon Engine
h - 4
Weight Weight
; Auto
?License
§Body
‘Engine
Hatchbaclé' S

470

B Corresponding Relational Schema
Relational Schema 1:

R1

R2

R3

R4

Leased Vehicle CompanyName RDBMS

OwnedVehicle ClubName

Model Manufacturer] Vehicleld License
Body Engine Type

Model Manufacturer] Vehicleld Registration
Weight Engine Type

Relational Schema 2:

R1 LeasedVehicle CompanyName RDBMS2

R2 | OwnedVehicle ClubName

R3| Model Manufacturer Vehicleld

R4 Engine License Body
Vehicleld Type

R5 Engine Registration Weight
Vehicleld Type

Relational Schema 3:

R1 Leased Vehicle CompanyName RDBMS3

R2 | OwnedVehicle ClubName

R3 Model Manufacturer Engine

R4 Engine License Body
Vehicleld Type

R5 Engine Registration Weight
Vehicleld Type

