
Interoperable Query Processing with Multiple

Knowledge Serversl

Louiqa Raschid and Yahui Chang and Bonnie

Institute for Advanced Computer Studies

University of Maryland

{louiqa \ yahui I bonnie }fQumiacs.umd.edu

Abstract: This paper describes a technique for infor-
mation mediation when multiple heterogeneous knowl-

edge and data servers are to be accessed during query
processing. One problem is building an intelligent in-

terface between each knowledge server (KS) and its
processor (KP); and the second is to provide interoper-

ability among multiple K P/KS so that a query may be
answered using information from multiple sources. We
present example scenarios which highlight these prob-
lems and then outline query mapping and transforma-

tion techniques that are applicable. The techniques
for solving the interoperability problems involve rep-

resentations in some canonical form. This includes a
canonical represent ation (CR) corresponding to each
KP/KS pair and a merged CR (MCR) to represent the
mapping among the C%. The MCR and CRa include

relevant information obtained from a source query, and
heterogeneous mapping (bet-map) information, for all

possible mappings among the multiple servers. The
knowledge in the canonical form must be represented
so that it can be easily accessed during query transfor-
mation. We use an example of translating queries from
an object schema to a relational schema to illustrate
typical knowledge that must be represented in some

canonical form. We use a high level logical language,
F-logic, to represent the heterogeneous mapping (het-
map) and query transformation information as a set

of declarative rules, in the canonical form.

1 Introduction

We address two problems of information mediation (IM)

that are encountered when combining knowledge from

heterogeneous knowledge servers and providing interop-

erable query processing: (1) intelligent query processing

within the context of a single system, i.e., within one

Knowledge Processor / Knowledge Server (KP/KS) pair;

and (2) intelligent and interoperable query processing

across multiple KP/KS. We refer to figure 1 to illustrate

these two problems.

The first information mediation problem is to provide

an intelligent interface that accepts a query from a user

and to modify this query to one that is more informative

and/or more appropriate for the particular knowledge

Permission to copy without fee sII or part of this materisl is
granted provided that the copies ore not made or distributed for
direct commercial adventege. the ACM copyright notice l nd the
tide of the publication l nd ite data eppaar, l nd notica ie ~ven
that copying is by permission of the Association for Computing
Machinery. To copy otherwiea, or to rapublish. raquiras a foe

and/or l pacific parrnission.

CIKM ’93-1 l/93/D. C., USA

G 1993 ACM o-%9791-626-3193/0011$1.50
461

Heterogeneous

J. Dorr

A
I IM Problem I

ElKS

DB

KBI

L ----- ----

A RM
1

~]

KS

KS DB

DB KB

KBn

--- A

= Reasoning
= Knowledge

= Database

= Knowledge

Module
Server

Figure 1: An Architecture for Information Mediation

with Multiple Heterogeneous Servers

server. The user may be unaware that the query is in-

appropriate, or that there is a mismatch between the

query and the information encoded in the corresponding

KS. This problem is compounded when the user poses

queries against one of several heterogeneous servers. We

resolve this mismatch by constructing a canonical rep-

resentation (CR) that is built through assimilation of

information for each KP /KS Dair. This remesent ation

is used to provide a modified ‘version of th~ query that

is more appropriate, allowing intelligent retrieval. This

problem is analogous to knowledge acquisition; in this re-

search context, we are achieving knowledge acquisition

by constructing a precompiled CR, through assimilation

of information from each KS.

The second information mediation problem is provid-

ing an interface to a number of knowledge servers. To

pose a query correctly, the user must be aware of all

possible distinctions between individual KP/KS pairs.

This includes knowledge of the different query process-

ing languages, the representation models of the different

knowledge servers and the different schema. In addi-

tion to these syntactic differences, the user must also be

aware of the semantic differences that may exist among

the KP/KS pairs. These differences may stem from mis-

1This research has been partially supported by the Na-
tional Science Foundation under grant IRI-9120788, by

the ARPA Basic Research Program under grant Nooo14-
92-J-1929, by the Army Research office under contract

DAAL03-91-C-O034 through Battelle Corporation, and by
the Army Research Institute under contract MDA-903-92-

R-0035 through Microelectronics and Design, Inc.

matched repreeentations and generalizations, inconsis-

tencies in representation, equivalent representations or

other forms of dependencies. We discuss techniques for

mapping a user’s query from one system to the infor-

mation from the knowledge base of another system, to

produce a modified query. In order to achieve this me-

diation, so that query processing is interoperable, and

knowledge is shared, we must take advantage of the

knowledge in each CR and capture the heterogeneous

mapping information among multiple C& in a merged

canorzical representation (MCR).

Query processing techniques have not always been suc-

cessful in building intelligent interoperable interfaces.

Information is often stored as ad hoc rules and may be

used when answering queries but the user has no insight

into how or why the rules were used. The canonical form

formalizes the knowledge needed to modify queries or

generate new queries. We use an example of translating

queries from an object schema to a relational schema to

illustrate typical knowledge that must be represented in

some canonical form. Modern theories in the field of ma-

chine understanding and translation of language bring

much to bear on the issues that are relevant to developing

a mapping between the input query representation (KP)

and the underlying data/knowledge base representation

(KS), (and vice versa). The development of a single

merged canonical representation for the current problem

is analogous to the task of developing an inter-lingua or

language-independent form by machine-translation re-

searchers (see, e.g., Dorr (1987, 1990, 1993)). Thus, the

techniques we develop for solving these problems have

been influenced from techniques that have been success-

fully applied in these fields of research.

This paper is organized as follows: section 2 presents

example scenarios for the two problems in providing

an intelligent interface and providing interoperability

among multiple knowledge servers. Section 3 introduces

the use of a canonical representation (CR) and a merged

canonical representation (MCR) to solve these two prob-

lems. Section 4 uses an example of mapping objects and

attributes between an object schema and equivalent re-

lational schema to illustrate the heterogeneous mapping

(bet-map) information that must be represented in the

MCR in some canonical form. Section 5 uses an ex-

ample XSQL-like query to illustrate the knowledge that

must be extracted from a query and represented in a

canonical form. Section 6 uses a high-level language

F-logic (as formulated by Kifer and Lausen (1989) and

Kifer et al. (1990)) to represent the heterogeneous map-

ping (bet-map) and query transformation information,

as a set of declarative rules, in the canonical form. The

approach is summarized in section i’. We compare our

work with related research in the area, and we discuss

future research.

2 Examples of Transforming Queries

from Object to Relational Schema

As an example of our approach to query transforma-

tion, we use a sample object schema (appendix A) and

three equivalent relational schema (appendix B) to pro-

vide examples of query transformation, going from ob-

ject schema to relational schema. In the object schema of

appendix A, each node is an object. The broken arcs rep-

resent an inherit ante hierarchy among the objects, and

the direction of the arrow represents a class to sub-class

relationship. A solid arc represents a named attribute

of some object which is itself another object. For exam-

ple, an arc (labeled LeasedVehicle) between the objects

Company and Vehicle, corresponds to LeasedVehicle, an

attribute of each object Company, referring to some ob-

ject Vehicle.

Since the schema contain equivalent information, we

can focus on the problem of extracting the relevant in-

formation from the source query and using relevant map-

ping information from the different schema to produce

a transformed query. The source query for the object

schema is an XSQL-like query, i.e., an extension of SQL

to access object data bases. The XSQL queries we use

are fairly simple and only differ from SQL queries in

the query path expressions in the where clause. We will

describe them briefly and refer the reader to Kifer et al.

(1992) for details of the language. An XSQL query takes

the following form, where X, Y and Z are objects Com-

pany, GasolineBoat and Company, respectively:

Query 1

Select Z
from Company X, GasolineBoat Y, Company Z . . .
where X. LeasedVehicle[Yl. Manufacturer[Z] . . .

This query, when applied to the object schema of ap-

pendix A, selects all objects Z, of Company, such that

each object X, of Company, has an attribute LeasedVehi-

cle which is an object Y (specified in the where clause).

Further, each Y is a GasolineBoat (specified in the from

clause), and the object to be retrieved, Z, is a Company

which is the Manufacturer of each GasolineBoat Y (spec-

ified in the where clause). As seen in the object schema

of appendix A, GasolineBoat does not have an attribute

Manufacturer and has to inherit this from the class Ve-

hicle, in the related class hierarchy.

There are three relational schemaa in appendix B. In

RDBMS 1, relations R1 and R2 have all the Company

and YachtClub information, R3 has all the Auto infor-

mation, (DieselAuto and GasolineAuto) and R4 has all

the Boat information (DieselBoat and GasolineBoat). In

RDBMS 2, R1 and R2 are as before. R3 has the Model

and Manufacturer information on each Vehicle (Diesel-

Boat, DieselAuto, GasolineBoat, GasolineAuto) and R4

and R5 have the remaining information on Auto and

Boat, respectively. RDBMS 3 differs from RDBMS 2 in

that the Model and Manufacturer information in R3 is

not identified based on the VehicleId information, but
is identified based on Engine information. The three

schemas are fairly straightforward representations for the

object schema. However, the subtle differences in their

structure must be reflected in the appropriate mappings,

to generate equivalent queries.

To obtain an SQL query in RDBMS 1, which is equiva-

lent to Query 1, for those manufacturers of GasolineBoat

leased by some company, we use the knowledge that the

VehicleId values in relation R1 (for the leased vehicles)

may correspond to either boats or automobiles. These

462

VehicleId values refer to information in R4, which in-

cludes Manufacturer information on both GasolineBoat

and DieselBoat. We must select only those tuples in R4

corresponding to GasolineBoat. This is indicated by the

value oft he Type attribute. To obtain the manufacturer

information we need relation R4 which haa only boats.

An equivalent SQL query would be as follows:

Quer~ 2
Select Manufacturer
from RI R4
where R1 .LeasedVehicle = R4. VehicleId and

R4.Type = GasolineBoat

To obtain a query equivalent to Query 1 in RDBMS

2, we use the knowledge that the VehicleId values in

RI may be either boats or automobiles. To identify the

boats, we refer to R5 which has information on Gaso-

lineBoat and DieselBoat. However, R5 does not have any

Manufacturer information. Manufacturer information is

in relation R3, but this relation includes information for

both boats and automobiles. An equivalent query would

be as follows:
Query 3

Select Manufacturer

from RI R3 R5
where R1 .LeasedVehicle = R5.VehicleId and

R5.Type = GasolineBoat
and R5.VehicleId = R3.VehicleId

The difference between RDBMS 2 and RDBMS 3 is

that the Manufacturer information in R3 is not identi-

fied based on the VehicleId but on the Engine. This will

change just the where clause in Query 9 such that re-

lations R3 and R5 are joined on Engine, and we do not

give this query here. Suppose we now consider a query

that is structurally similar to Query 1, wrt the object

schema, as follows:

Query 4
Select Z

from YachtClub X, GasolineBoat Y, Company Z . . .
where X. OwnedVehicle [Yj. Manufacturer [Z] . . .

Although Query 4 is similar to Query 1, from the ob-

ject schema of appendix A, we know that all OwnedVe-

hicles must be in GasolineBoat. Consequently, VehicleId

values in relation R2 refer only to GasolineBoat and we

can use these values to directly identify the Manufac-

turer information from R3. Thus, in RDBMS .2, unlike

the previous Query 3, we do not need R5 to identify the

GasolineBoat, and we can obtain Manufacturer from just

R2 and R3 as follows:
Query 5

Select Manufacturer
from R2 R3
where R2. LeasedVehicle = R3.VehicleId

However, in RDBMS 3, although we have the knowl-

edge that the VehicleId values in R2 refer only to Gaso-

lineBoat, in R3, the Manufacturer information cannot

be obtained based on the value of the VehicleId. We

need the Engine information for the GasolineBoat. We

use the VehicleId values in R2 to identify GasolineBoat

in R5, and use the Engine information to obtain Manu-

facturer information from R3. Thus, we cannot use the

knowledge that all OwnedVehicles are in GasolineBoat,

during translation. The corresponding query will be very

similar to Query 3, and is as follows:

Project
time frame (completion dates, schedules)

KSI personnel needed (skill s, experience
cost estimates (to charge for a project)
components needed (may be recursively defined
component usage

Personnel Employment
SkIlls
salary
current work

availabllit y
KSZ Personnel Work H Istory

experience (h wtorlcal
salary @“lstorlcal

Skills
avad abdlt y

Components
cost estimates (for purchase)

availability inventory, location
KS3 OD rehabdlty

(dependent on usage, time frame, project,..)
subcomponents may be recursively defined

OD equivalent components

(dependent on usage, project, reliability . ..)

‘igure 2: Information Encoded in Three Knowledge

Servers

Query 6

Select Manufacturer
from R2 R3 R5

where R2.LeasedVehicle = R5.VehicleId and
R5.Engine = R3.Engine

Although the translation to obtain the SQL queries

appears to be straightforward, it is clear that the trans-

lation process must identify the relevant knowledge from

(1) the source XSQL queries, (2) the object schema (3)

the equivalent relational schema, and (4) the mapping in-

formation between these schema. Our research addresses

the problem of defining an appropriate canonical repre-

sentation which will assist in the task of obtaining this

knowledge from the queries and schemas as well as be

in a form that supports the translation process. The

import ante of such a canonical representation increases,

as the queries and the mappings increase in representa-

tional power.

We now consider an example of sharing information

among three knowledge servers, KS1, KS2 and KSS,

shown in figure 2. The servers provide information on

Projects, Personnel and Components, respectively. We

do not make the assumption that the servers share equiv-

alent knowledge. Thus, unlike in the previous example,

there is no direct mapping among equivalent objects;

however, mapping information is needed to facilitate in-

formation sharing.

Suppose KP1 requests specific information on the re-

liability of a single component. KP3 would return one

or more reliability figures. However, the KPs/KSs pair

may have the knowledge that there is a dependency be-

tween these reliability figures and the particular usage of

this component, in a project in KS1. Alternately, sup-

pose that these reliability figures vary as components are

updated, and thus depend on the time frame of a project

in KS1. Ideally, we would return a modified query that

463

indicates that the usage in a project or the time frame

is needed from KS1, to obtain the appropriate reliability

figures.

Suppose a query posed by KP1 /KS1 attempted to

identify the employees needed to staff a particular

project. This information must be obtained from the

KP2/KS2 pair. There are two ways of identifying per-

sonnel here, either based on work history or on present

employment. If personnel are identified on the basis of

their skills in the Personnel Work History relation in

KS2, then for these employees one must determine their

employment status, availability y and salary. This may

require further access to the Personnel Employment re-

lation in KS2. Further, their availability may depend

on the status of some project on which they are cur-

rently employed, as specified in KS1. This knowledge

that is used to modify the queries does not belong in

the category of structural mappings between equivalent

objects in different schemes, as in the previous example.

However, this information must be represented in some

canonical form for use during query transformation. Al-

though this is not discussed in this paper, we included

this example to describe the variety of information that

must be encoded.

3 Using Canonical Representations in

Query Transformation

Assuming that some appropriate canonical form has

been identified, Figure 3 illustrates how the individual

CRs and the composite MCR (obtained from the merg-

ing of possible mappings among the individual Cl%) are

used. The simpler problem involves a query to a single

knowledge server KSi and so uses informatio~ from a sin-

gle canonical representation Cm serving that KPi /KSj

pair. It involves a mapping specified along some appr~

priate horizontal axis of figure 3. The result of trans-

forming the query using the Cl& is a modified query,

Q:.
The solution to the problem of interoperable query

processing and knowledge sharing involves the mapping

into, and out of, the MCR specified along the vertical

axis of figure 3. The input is a query Qi which is under-

stood by a single Cm that represents a KP~/KSi pair.

However, answering this query requires understanding

and accessing information from the other KP/KS pairs

via the MCR. Thus, we generate appropriate query forms

for the other KP/KS pairs, using the knowledge in the

MCR and the corresponding CIM. The output is a mod-

ified query, ~., relevant to the particular pair, KPi/KSi,

as well as other queries Q;, Q;, Qj, etc. relevant to the

other CRs. Thus, to provide interoperabilit y, we make

use of the heterogeneous mapping (bet-map) information

in the MCR as well m the CRs.

4 Mapping Information for Query

Transformation Among

Heterogeneous Models

There are several components involved in the query

transformation process. One important component is

Ff2JA?t?rFZ%L%FS%K?2*
Settings Settings Settings

L_L_L CR = Canonical Representation

L-J =~~~fiedQuy

MCR = Merged Canonical R.epresenta

A A A---- -1-----+- --- +---
I

:-~~~

I I
I

I
I I

I

I I

R1 t
Q~

I t I
I I I

I I
CR2 I Q;

I I 1

I I I

C R3 Q~

I I I 1

I I I I

1 --- +----- +---- --J

I I 1
KPI/KSl KP2/Ks2 KP3JKS3

Figure 3: Query Mapping and Transformation Using

Canonical Representations

the heterogeneous mapping (bet-map) information. In

its simples~ form, this provides a structural mapping

among entities in the canonical form. If we consider

the particular case of transforming an XSQL-like query,

against an object database, into an SQL-like query

against a relational database, then this heterogeneous

mapping (bet-map) will provide, at the least, for each

attribute of an obiect, the corresponding relation from

which this attribu~e may be retri~ved. -

Clearly, the exact nature of the heterogeneous map-

ping information is largely determined by the different

data models. One of the zoals of our research is to de-

termine an appropriate ca~onical representation so that

this information may be represented, independent of the

Particular data models. In this paDer, however, we will

~imit ourselves to an object modei aid a relational model,

and use the example schema to identify example map-

pings and the rationale. We do not imply that these

examples are complete. We describe this heterogeneous

mapping (bet-map) information in English, and in a pos-

sible canonical form (based on a high-level logic) in a

later section.

Each of the following cases corresponds to a different

scenario for mapping between an object schema and a

relational schema. The scenarios are straightforward. In

each case, we assume that in the object schema, we are

interested in obtaining values for some attribute corre-

sponding to a particular object, a start object (SO). If

the attribute is not actually structurally associated with
the start object, then it must be associated with an end

object (EO) and there will be a class hierarchy associat-

ing these two objects. Finally, we may also refer to path

objects (PO) occurring in the path between the start

and end objects. The task of extracting the SO, EO

and PO information from an examDle XSQL-like cmer~. .
is discussed in the next section. In the corresponding re-

lational schema, the heterogeneous mapping information

must identify the appropriate tuples of one (or more) re-

lation(s) and the corresponding attribute(s) involved. As

464

we mentioned earlier, we only consider the simple case of

a single start object (SO) and attribute. Extensions to

include multiple attributes, and combining information

among multiple objects, when the attribute of an object

is itself an object is discussed by Raschid et al. (1993).

Figure 4 summarizes the different cases that are to be

discussed in detail in this section.

Csse 1

case2

Case 3

Case 4

Transformation depends on start object SO

Case 1.1 Use SO, attribute to m~

Case 1.2

duce a iist {(relation n~me
RN, attribute name AN)}

Same as 1.1 except that SO
is also used to identify a
subset of tuples of relation
RN. Produce a list {(rel
name RN, attr name AN,
selection criterion for RN
bssed on SO)}— —

‘1’ransformation depe

Case 2.1
Does not depend

on SO.
Case 2.2
Also depends on
start object SO.

Case 2.3

Does not depend
on SO.

Case 2.4

Also depends on
start object SO.

is on end object EO

Use EO, attribute to pro-

duce a list / (relation name
RN, attrib~t~ name AN)}
Same as 2.1 except that SO
is also used to identify a
subset of tuples of relation
RN. Produce a list {(rel

name RN,attribute name
AN, selection criterion for

RN based on SO)}
Same as 1.2 except that

EO is used instead of SO
to identify a subset of tu-

ples of RN. Produce a list
{(RN, AN, selection crite-

rion for RN based on EO)}
Same as 2.3 except that

SO is also used to identify
a subset of RN. Produce
a list {(RN, AN, selection

criterion for RN based on

SO selection criterion for
RN based on EO)}

Transformation depends on path objects PO in

path between SO and EO

Most general case where attribute of object is

an ob iect

Figure 4: Cases for Mapping Between an Object Schema

and a Relational Schema

Case 1 - Depends on SO

In this scenario, the organization of the correspond-

ing relational schema dictates that the transforma-

tion is dependent only on the start object SO, (and

is independent of the end object EO or path ob-

jects PO, if any). Thus, we obtain the correct map-

ping directly from the (start object, attribute) pair.

Consider an example pair from the object schema

of appendix A, say (DieselAuto, Model). There are

two possibilities, ss follows:

Case 1.1 - Depends on SO

In this first case, the bet-map uses (SO, attr-SO) to

obtain a relation name RN and an attribute name

AN. The attribute AN must be an attribute of the

relation RN. All tuples in RN correspond to the

start object SO, and attribute AN has the values

for attribute attr-SO, e.g., the values for Model for

DieselAuto. For example, if there is a relation con-

taining information on all diesel autos, then the het-

map transformation, may produce the following re-

lation and attribute pair:

(RN - RelDieselAuto, AN E AttrModel)

Instead of a single pair, bet-map may produce a list

of {(RN, AN)}. For example, if the information

on diesel autos were stored in separate relations,

for hatchbacks and sedans, this would produce the

following:

{(RN = RelDieselSedan, AN s AttrModel), (RN s

RelDieselHatchback, AN = AttrModel)}.

Case 1.2 – SO provides an additional constraint

In this second case, the bet-map information for

(SO, attr-SO) provides a relation RN, and an at-

tribute AN of that relation RN, corresponding to

the attribute attr-SO. However, all tuples in RN do

not correspond to the start object SO. Thus, SO

provides an additional selection criterion, to select

those tuples in relation RN which actually corre-

spond to SO. Attribute AN-SO is a second attribute

of relation RN and tuples of RN which are in a range

of specified values for this attribute, AN-SO, corre-

spond to the tuples for object SO. The attribute

values of AN then correspond to the values for at-

tribute attr-SO, for the selected tuples in RN.

Suppose DieselAuto and DieselBoat are stored to-

gether in a single relation DieselVehicle. Then, an

example of the bet-map transformation is to pro-

duce the following:

(RN - RelDieselVehicle, AttrAN-SO, range-of-

~alues(for DieselAuto) in AttrAN-SO -

= {DieselAuto}, AN s AttrModel)

Su~r)ose instead that all DieselAuto obiects are ac-. .
tually identified by whether they are h~tchbacks or

sedans in the relation DieselVehicle. Then bet-map

will produce the following:

(RelDieselVehicle, AttrAN-SO, range-of-values(for

DieselAuto) in AttrAN-SO

= {HatchBack, Sedan}, AttrModel)

Case 2- Depends on EO

For this scenario, the bet-map information will in-

dicate that the transformation is dependent on the

end object, EO. Suppose we consider the start ob-

ject, attribute pair, (DieselAuto, Model). The at-

tribute Model is actually structurally associated

with the end object (EO) Vehicle. The bet-map in-

formation may indicate that the relational schema is

such that the corresponding relations and attributes

are dependent on (Vehicle, Model), as opposed to

(DieselAuto, Model). This is the scenario in Cases

2.1 and 2.3. Further, it is possible that the SO,

DieselAuto, is a further constraint on the relation

(indicating further selection of some appropriate tu-

465

plea which are actually diesel autos). This is the

situation in Cases 2.2 and 2.4.

Case 2.1 -Depends onEO

This is similar to Case 1.1, and bet-map will use the

(EO, attribute) pair of (Vehicle, Model), instead of

the (SO, attribute) pair of (DieselAuto, Model), to

obtain a list of relation attribute pairs, {(RN, AN)},

for example, (RelVehicle, AttrModel). Such a situ-

ation will result when all the vehicles in the Vehicle

relation also happen to be diesel autos, and so there

is no necessity to select only a subset of those tu-

ples from the Vehicle relation that correspond to

DieselAuto.

Case 2.2 – SO provides an additional constraint

This corresponds to the SO, say Auto, being an

additional constraint, in a variation of the previ-

ous case. In other words, the relational schema is

such that the relation and attribute names are de-

termined based on the EO, for example Vehicle, but

all the tuples in this relation do not necessarily cor-

respond to the SO, Auto.

Suppose we consider the set of possible path objects

between a start object, say Auto and an end object,

say Vehicle. They are as follows:

< Auto, DieselAuto, DieselVehicle, Vehicle >

< Auto, GasolineAuto, GasolineVehicle, Vehicle >

The bet-map will use (Vehicle, Model) and (Auto,

Model) and produce the following, indicating that

only some of the tuples in the relation correspond to

the SO, Auto. Auto provides an additional selection

criterion based on the values of some attribute in the

relation, as follows:

(RelVehicle, AttrAN-SO, range-of-values(for Auto)

in AttrAN-SO

= {DieselAuto, GasolineAuto}, AttrModel).

Case 2.3 – EO provides additional constraint

This is similar to Case 1.2, except that the end ob-

ject EO is used to identify the relation and attribute.

However, all tuples in the relation do not corre-

spond to EO, and there is an additional selection

constraint on that relation, to identify the tuples

corresponding to EO. Thus, the bet-map t ransfor-

mation for the (EO, attribute) pair will produce a

list of

{(RN, AN-EO, range-of-values(for EO) in AN-EO,

AN)}.

Suppose we consider a situation where all the Vehi-

cle data are stored with other objects, in a relation

AllItems. There is an attribute which haa an iden-

tifying value, say Vehicle, to identify all vehicles in

the relation AllItems. In addition, all the vehicles

in that relation happen to be autos. An example is

aa follows:

(RelAllItems, AttrAN-EO, range-of-values(for Vehi-

cle) in AttrAN-EO = {Vehicle},

AttrModel).

Case 2.4 – Both SO and EO provide additional con-

straint

This case is similar to 2.3, in that bet-map uses

the EO and attribute to obtain a relation and at-

tribute pair. In addition, there is a selection con-

straint which restricts some of the tuples of the re-

lation, based on an attribute, AN-EO, to identify

all the tuples corresponding to the EO. Finally, the

start object, SO, also provides an additional selec-

tion constraint, based on attribute AN-SO, to iden-

tify the tuples corresponding to SO. Het-map will

produce the following:

{(RN, AN-EO, range-of-values(for EO) in AN-EO,

AN-SO, range-of-values(for SO) in AN-SO, AN)}.

This corresponds to the case where all Vehicle data

are stored in a relation AllItems with other items.

An attribute with value Vehicle identifies the vehi-

cles in this relation. However, all the vehicles do

not correspond to the object DieselAuto. We need

to identify the tuples corresponding to objects that

are in both Vehicle and DieselAuto. To explain the

need for two selection constraints based based on

EO and SO, note that there may be multiple class

hierarchies associated with Vehicle. DieselAuto may

only participate in one such hierarchy. Similarly,

DieselAuto may participate in other hierarchies that

do not include Vehicle. An example is as follows:

(RelAllItems, AttrAN-EO, range-of-values(for Vehi-

cle) in AttrAN-EO = {Vehicle},

AttrAN-SO, range-of-values (for Auto) in AttrAN-

S0 = {DieselAuto, GasolineAuto},

AttrModel).

We omit the discussion of Cases 3 and 4 and refer

the reader to Raschid et al. (1993).

5 Extracting Query Transformation

Information from an XSQL query

In this section we consider parsing an XSQL-like query

to extract information relevant to the query transforma-

tion process. We assume that similar information can

be extracted from queries in other languages. An XSQL

query is of the following form:

Select

from object varname, object varname . . .

where qpe

The que~y path expression (qpe) in the where clause of

the query is of the following form:

X.attr-X [~.attr-Y [Z].attr-Z [A].attr-A [B] . . .

where X, Y, Z, etc., are object classes, attr-X, attr-Y,

etc., are attribute labels, and X.attr-X [Y] is read as the

attribute attr-X for the object X, is an object Y.

The XSQL query and, in particular, the qpe of the

query is resolved against the object schema, represented

in F-logic in our case. A procedure Extract will oper-

ate on the list of objects in the from clause of the query,

the qpe of the query, and the schema. The output will

be a set of query path structures (qps). The set of qps

obtained from an XSQL query will correspond to the

mapping information from this query, in the canonical

representation (CR). The qps in the CR will be used in

466

Extract: Extracting information from X.attr-X[YJ.attr-Y[Z]

Eztractl Object type of Y known in from
I Eztractl.~ I X.attr-X returns obiect Y’ and

I
.

y’~y

Extractl,~ X.attr-X returns object Y’ and
Y’#Y

Eztract2 Object type of Y not known in from
Eztract2.1 I X.attr-X returns some ob iect

Y’ and Y’ has some sub-
class Y which have at-
tribute attr-Y

Extract2,2 X.attr-X returns some object
Y’ but none of the sub-
class Y of Y’ has attribute
attr-Y. However, Y and Y’

I I may inherit attribute attr-Y

Figure 5: Summary of the Extract Procedure

the next step, which is the mapping between data mod-
els, using the merged canonical representation (MCR),
for the purpose of generating some translated query. For
simplicity, we consider an XSQL query with a single qpe
in the where clause.

Each qps structure in the CR is as follows:

[start-object,
list-type = {sub I sup},

< list >,
end-object,

attribute,
return-object (end-object, attribute)]

In each qps structure, the list-type indicates the exis-
tence of a path (based on some class hierarchy) between
the objects start-object, say X, and end-object, say X’,
in the F-logic schema. The direction of traversal of this
hierarchy is noted by sub or sup. This is followed by
the list of objects that are traversed in this path. The
start-object and end-object, X and X’, may be explic-
itly specified in the corresponding XSQL query or they
are obtained from the F-logic schema, by the Extract
procedure. The end-object is a particular object X’ with
attribute attr-X as specified in the qpe. Finally, we also
determine the return-object that is returned based on X’
and attr-X. This return object may not be identical to
the Y specified in the from clause. If indeed it is differ-
ent from Y, then Extract must continue and generate
further qps until the complete path from say X to Y is
determined. There may be several qps for each object
identified as start-object. Note that this start-object is
just the start of a list of objects in the qpe, and is differ-
ent from the start object S0, mentioned in the bet-map
information, in the previous section. Figure 5 summa-
rizes the operation of the procedure Extract. Readers
are referred to Raschid et al. (1993) for details.

6 Query Transformation and

Heterogeneous Mapping Information

The information on mapping between the different
schema, corresponding to heterogeneous data models,
and the rules for query transformation, must be rep-
resented in a high level language. We chose the F-logic

language aa formulated by Kifer and Lausen (1989) and
Kifer et al. (1990) for a number of reasons. We briefly
present the syntax and semantics of F-logic and then
describe the data structures and a few of the transfor-
mation rules.

6.1 Syntax of F-logic

We borrow this brief description from Lefebvre et al.

(1992). In F-logic, the instance term 0: c means that
the object o is an instance of class c. A data term

o[rn@al, . . . ,an + v;m’@al,aP +-+ {v’, v“}] means
that the value of the functional method m with argu-

ments al to an for the object o is a set containing the

values v’ and v“. If a method m has no arguments, ‘Xl”
will be omitted. The symbol s indicates a set-valued
met hod.2 Note that other values could also be mem-
bers of this set, and that the expression above does not

restrict the value of m’ for o to be {v’, v“}; it only in-
dicates some of the values of the corresponding set. An
object can be denoted by a constant, or a term. For
example, dept(cs) is a valid object identifier. An atomic

data term is a data term referring to only one method.
Notational conventions allow us to write o[rn’ * v] in-
stead of o[m’ * {v}] for a single element of a set-valued
method; the expression o[m + v; n + v’] is equivalent
to o[m + v] A o[n + v’]; the expression 0: c[m + v] is
equivalent to 0: c A o[m + v].

An F-logic program consists of a set of data decla-
rations(data or instance terms) and a set of deduction

rules. A deduction rule has a head, which is a data term,
and a body, which is a conjunction of data and instance
terms. Disjunction and negation are allowed in the body
of rules. Deduction rules can be used in a way similar
to Datalog rules(or Prolog clauses), i.e., the head of a
rule defines a derived method, the value of which can be
found by evaluating the body.

6.2 Data Structures for Heterogeneous
Mapping and Transformation

We use the following data structures:

MPS[begin-class + X,
list-class + P,
end-claas@P+ X’,
attr-X + A,
return-object@ X’, A + Yl

HT-mapping(X, D)
[reachable-attr * A,
includes + X’,

mappings ++ map(X, A, D)[rel-attr * (R, Z)],
constraints +constraint(R, X)

[attr + AN-C, range + S]]

CR-query (MPS, D)
[rel-attr H (R, AN),
constraints + (R, AN-C, S),
join-path@P + L]

A mapping path structure (MPS) represents the se-
mantics extracted from a simple XSQL query path struc-

2This symbol is different from the one used in the original
paper.

467

begin-class X end-class X’
reachable const r. includes reach able const r.

-attr -attr

1.1 Y N

1.2 Y Y

2.2 N Y Y N

2.4 N Y Y Y

2.1 N N Y Y N

2.3 N N Y Y Y

3 N N N Y

Figure 6: Decision Table for Heterogeneous Mapping Al-
gorithm

ture (qps), as discussed in the previous section. It has
methods begin-class, list-class, end-class, return-object,

etc., corresponding to the qps structure. The heter~
geneous mapping (HT-mapping) captures the bet-map
information between the object-oriented and relational
schema. Its structure is discussed in detail in the next
section. CR-query corresponds to the transformed query
in the canonical representation (CR). CR-query will be
used to generate the appropriate relational query for a
particular database schema D (the actual generation is
not discussed here). The method rel-attr of CR-query
will return one or more pairs of relation and attribute
names. For each Dair that is returned. if there is ad-
ditional selection ~riteria, then the method constraints

returns the appropriate attribute name and the range of
values for the selected tuDles to aualifv. The ioin-nath is

a method that provides the join i~forrnation ~or th~ Case
3 of the bet-map (not discussed in detail). Other struc-
tures, e.g., lists are omitted. Recall that several possible
heterogeneous mappings between relational and object-
oriented schema were discussed previously a~d presented
as several cases. We discuss the canonical remesentation
of some cases in this section.

6.3 Heterogeneous Mapping Algorithm and
F-logic Rules

The heterogeneous mapping and transformation algo-

rithm that we Dresent here is intended to movide a fla-

vor of the t ype~ of transformations that can- be expressed

and is not intended to represent a complete algorithm for

transforming XSQL queries. It can best be expressed by

the decision table in figure 6, where each row corresponds
to one of the sub-cases of possible bet-map transforma-
tions discussed previously.

Information extracted from the XSQL query, in the
form of qps are represented by the MPS. This and the rel-
evant mapping information, represent ed in HT-mapping,
are used in the decision procedure. The MPS encodes a
decision procedure based on the begin class X, end class
X’, and the attribute of interest A specified in the XSQL
query. For both X and X’, HT-mapping has the relevant
mapping information for a particular database D, in this
case each sample database is a relational database.

Each row in the table corresponds to one of the sub-
cases of possible bet-map transformation previously dis-
cussed. We note that case 3 is a fairly complex case
involving a sequence of joins in the relational query and
the details are omitted. The decision table is imple-

mented using a set of rules in F-logic. These rules occur
in 3 groups. Ident-Rel-Attr is a group of rules which
represents the bet-map transformation that provides the
corresponding relation and attribute name in the CR-
query data structure. Sel-Constr is a group of rules
which specifies selection criteria that must first be satis-
fied by the tuples of the relations specified in Ident-Rel-
Attr rules (or the Join-Path rules). Join-Path is a group
of rules which specify relations which must be joined,
corresponding to the more complicated Case 3 of the
bet-map transformations that have been discussed. This
third group of rules is not described here.

Case 1.1 is selected when the bet-map information,
encoded by MPS and HT-mapping in the canonical rep-
resentation, indicate that given the begin class X, A is
a reachable attribute. In other words, the corresponding
relation and attribute names are directly obtained. The
following F-logic rule in the group Ident-Rel-Attr may
be applied in this case and will provide one or more (re-
lation, attribute) pair(s) in the corresponding CR-query
structure:

CR-query (MPS, D)
[rel-attr +-+ (R, AN)] +

MPS[begin-class + X , attr + A] A

HT-mapping(X, D)[reachable-attr ~ A,
mappings * map(X, A, D)

[rel-attr + (R, AN)]]

From our example, an instantiation of this rule for the

pair (DieselAuto, Model) may be as follows:

CR-query (MPS, D)
[rel-attr + (RelDieselAuto, AttrModel)] +

MPS[begin-class + DieselAuto , attr + Model] A
HT-mapping(DieselAuto, D)

[reachable-attr * Model,

mappings w map(DieselAuto, Model, D)

[rel-attr + (RelDieselAuto, AttrModel)]]

For Case 1.2, the MPS and HT-mapping indicate that

given the begin class X, A is a reachable attribute. How-
ever, HT-mapping indicates there is an additional selec-
tion constraint that (the tuples corresponding to) X must
satisfy. Thus, in addition to applying the previous rule,
the following rule in the group Sel-Constr must also be
applied. This rule will generate a constraint in the cor-
responding CR-query structure, as follows:

CR-query(MPS, D)
[constraints + (R, AN-C, S)] +-
MPS[begin-class --+X] A

CR-query (MPS, D)[rel-attr ~ (R, AN)] A

HT-mapping(X, D)[constraints # constraint(R, X)
[attr + AN-C, range+ S]

If we consider the example from the previous section,
corresponding to Case 1.2, one particular instantiation

for the two rules from Ident-Rel-Attr and Sel-Constr is

as follows:

CR-query(MPS, D)
[rel-attr * (RelDieselVehicle, AttrModel)] +

MPS[begin-claas + DieselAuto , attr + Model] A
HT-mapping(DieselAuto, D)

[reachable-attr * Model,
mappings s map(DieselAuto, Model, D)

[rel-attr * (RelDieselAuto, AttrModel)]]

468

CR-query (MPS, D) may express mismatch in representation among hetero-
[constraints *
(RelDieselVehicle, AttrAN-C, {Hatchback, Sedan })] +

geneous schema. The paper describes an approach to in-
teroperable query processing for different schema based

MPS[begin-class + DieselAuto] A
CR-query(MPS, D)

on the same data model (entity relationship model), but

(rel-attr + (RelDieselVehicle. Model)l A
should be applicable to heterogeneous data models as

11

HT~mapping(D\eselAuto, D) ‘ ‘“
well.

[constraints * constraint(RelDieselVehicle, DieselAuto)
Finally, in SIMS (see Arens and Knoblock (1992)), in-

[attr + AN-C, range+ {Hatchback, Sedan}] formation sharing is facilitated through using the LOOM

After this transformation, we see that CR-query for
this particular database and query is as follows:

CR-query (MPS, D)
[rel-attr + (RelDieselVehicle, AttrModel)]
[constraints*
(RelDieselVehicle, AttrAN-C, {Hatchback, Sedan })]

It should be straightforward to generate a selection
query which selects the values of the attribute AttrModel
from those tuples of the relation RelDieselVehicle such
that the range of values in the attribute AttrAN-C is
{Hatchback, Sedan}. A complete discussion of all the
other caaes in the decision table in figure 6 are presented
in Raschid et al. (1993).)

7 Summary

We have ~roDosed the use of a canonical representation
(CR) to a~dr&s interoperable query processing with het-
erogeneous databases. We use examples of extracting
knowledge from an XSQL-like query and mapping be-
tween heterogeneous schema to illustrate the knowledge
that must be in the CR. We use a high-level declarative
language F-logic, to demonstrate a possible form for the

CR.

We now com~are our research with related work. Kent
(1991) classifie~ mismatches in heterogeneous databases
as domain mismatches (discrepancies among data values,
units of measure, data types, etc.) and schema mismat ch
(different constructs in the data models representing the
same concept). They use a language called the IPL (Iris
Programming Language) to express integrator functions
to solve the mismatch. Thev do not address the moblem. .
of query transformation. Semantic heterogeneityy, where
discrepancies may occur with the same data model, is
investigated by Krishnamurthy et al. (1991). The goal

of their research is achieving schema integration (trans-
parent to the users) and supporting the ability to update
a multidatabase. The language they propose is an exten-
sion to a Horn language. Our research differs from theirs
in that we consider multiple data models and query lan-
guages. Kim and Seo (1991) provide an exhaustive list of
conflicts that may occur in a multidatabase environment,
expressed in the context of the relational data model.

The research that is closest to our work is described
by Lefebvre et al. (1992) and Qian (1992). Lefebvre
et al. (1992) consider the the problem of interoperable
query processing, but their approach is limited to the
relational data model. F-logic is used to express the
mapping information among multiple relational schema
and to express the algorithm for query transformation.
Our work can be seen as an extension of their approach,
to include heterogeneous models. Qian (1992) suggests
that a language which has minimal representation bias

knowledge representation schema to construct a global
schema for each application domain. Queries are pro-
posed against the global schema and the SIMS system
formulates a plan for query evaluation. The sub-queries
are evaluated by LIM (interface modules) which build
LOOM schema for each of the databases. This research,
too, does not address the issues of query transformation
and interoperable query processing.

Our current research has been limited to equivalent in-
formation resident in heterogeneous servers. We plan to
extend our research to include knowledge of dependen-
cies, constraints, etc. where the information in the CR
may no longer be equivalent among the servers. As an
example, in the LOOM system, a concept is described by
structural characteristics, a classification hierarchy, and
its relationship with other concepts. It will be a chal-
lenge to provide interoperability for a LOOM schema, in
conjunction with relational and object-oriented schema.

8 Bibliography

Arens, Y. and C. Knoblock (1992) “Planning and refor-
mulating queries for semantically-modeled multidatabase
systems,” Proceedings of the International Conference on
Knowledge Management.

Barsalou, T. and D. Gangopadhay (1992) “M(DM): An open
framework for interoperation of multimodal multidatabaae
systems,” Proceedings of the International Conference on
Data Engineering.

Dorr, B. (1987) ‘UNITRAN: A Principle-Based Approach to
Machine Translation,” AI Technical Report 1000, Master

of Science thesis, Department of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology.

Dorr, B. (1990) ‘Solving Thematic Divergences in Machine
Translation,” Proceedings of the 28th Annual Conference of

the Association for Computational Linguistics, University
of Pittsburgh, Pittsburgh, PA, 127–134.

Dorr, B. (1993) “Interlingual Machine Translation: A Pa-
rametrized Approach,” Artificial Intelligence 63:l&2.

Gardarin, G. and P. Valduriez (1992) “ESQL2: An object-
oriented SQL with F-logic semantics,n Proceedings of the

International Conference on Data Engineering.

Jeusfeld, M. and M. Jarke (1991) ‘From relational to object-
oriented integrity simplification,” Proceedings of the Sec-
ond International Conference on Deductive and Object-

Oriented Databases.

Kent, W. (1991) ‘Solving domain mismatch and schema
mismatch problems with an object-oriented database pro-
gramming language,” Proceedings of the International

Conference on Very Large Data Bases.

Kifer, M. and G. Lausen (1989) ‘F-logic: A higher-order
language for reasoning about objects, inheritance and
scheme,” Proceedings of the ACM Sigmod Conference.

Kifer, M., G. Lausen, and J. Wu (1990) “Logical foundations
of object-oriented and frame-based languages,” SUNY at
Stonybrook, TR 90/14.

469

Kifer, M., W. Kim, and Y. Sagiv (1992) “Querying object-

oriented databsses,n Proc. of the ACM Sigmod Confer-
ence.

Kim, W. and J. Seo (December, 1991) “Classifying schematic
and data heterogeneity in multidatabase systems,” IEEE
Computer, pages 12-18.

Krishnamurthy, R., W. Litwin, and W. Kent (1991) “Lan-
guage features for interoperability of databases with

schematic discrepancies,” Proceedings of the ACM .%gmod
Conference.

Lefebvre, A., P. Bernus and R. Topor (1992) “Query trans-

formation for accessing heterogeneous databases,” Joint
International Conference and Symposium on Logic Pro-
gramming, Workshop on Deductive Databases.

Qian, X. (1992) “Semantic interoperation via intelligent me-
diation,” Personal communication.

Raschid, L., Y. Chang, and B. Dorr (1993) “Query trans-
formation among heterogeneous data models: a prototype

baaed on F-logic~” In preparation.

A Example Object Schema
Company Yacht Club

LessedVehicle —

CompanyNam ? Vehicle
H

Manufacturer

VehicleId

Model

. .

Dies~lVehicle Gss~ineVehicle

1

DieselBoaf” ““”””:”””””””: DieselAuto
.f3ssolineBoat

mm:
I I —:

H
Engine

Weight

GssolineAu&

im
+ Auto :

License

Body

Engine

ET
Registration

Engine

Weight

B Corresponding Relational Schema

Relational Schema 1:

RI LessedVehicle CompanyName
m

R2 OwnedVehicle ClubName

KJI Model \ Manufactmer/ VehicleId [License I

I Body Engine Type

R4 Model Manufacturer VehicleId Registration

Weight Engine Type

Relational Schema 2:

RI LessedVehicle CompanyName
B

R2 O wnedVehicle ClubName

R3 Model Manufacturer VehicleId
1 I I I

R4 Engine License Body

VehicleId Type

FM Engine Registration Weight

VehicleId Type

Relational Schema 3:

RI LeasedVehicle CompanyName
B

R2 OwnedVehicle ClubName

R3 Model Manufacturer Engine
1 1

r
R4 I Engim I License I Body I

VehicleId Type

R5 Engine Registration Weight

I VehickId I Type I.
Hatchback

mfi

470

