

Classification

Jordan Boyd-Graber University of Maryland MULTICLASS

Slides adapted from Rob Schapire and Fei Xia

Motivation

- Binary and Multi-class: problems and classifiers
- Solving Multi-class problems with binary classifiers
 - One-vs-all
 - All pairs
 - Error correcting codes

Classification Problems

- Natural binary
 - Spam classification (spam vs. ham)
 - Segmentation (same or different)
 - Coreference

Classification Problems

- Natural binary
 - Spam classification (spam vs. ham)
 - Segmentation (same or different)
 - Coreference
- However, many are multiclass
 - Topic classification
 - Part of speech tagging
 - Scene classification

Classifiers

- Some are directly multi-class (naïve Bayes, logistic regression, KNN)
- Other classifiers are basically binary

Classifiers

- Some are directly multi-class (naïve Bayes, logistic regression, KNN)
- Other classifiers are basically binary
 - SVM
 - Perceptron
 - Boosting

Reduction

Multiclass Data

$\langle \texttt{name=Cindy} \rangle$,	age=5 ,	sex=F \rangle ,	
$\langle name=Marcia,$	age=15,	sex=F $ angle$,	
$\langle \texttt{name=Bobby}$,	age=6 ,	sex=M \rangle ,	
$\langle name=Jan $,	age=12,	sex=F \rangle ,	
$\langle \texttt{name=Peter}$,	age=13,	sex=M \rangle ,	

Reduction

Multiclass Data

<pre>(name=Cindy ,</pre>	age=5 ,	sex=F $ angle$,	
$\langle name=Marcia,$	age=15,	sex=F $ angle$,	
$\langle \texttt{name=Bobby}$,	age=6 ,	sex=M $ angle$,	
$\langle name=Jan $,	age=12,	sex=F $ angle$,	
$\langle name=Peter $,	age=13,	sex=M $ angle$,	

Binary Classifier

Reduction

Multiclass Data

<pre>(name=Cindy ,</pre>	age=5 ,	sex=F $ angle$,	
$\langle name=Marcia,$	age=15,	sex=F $ angle$,	
$\langle \texttt{name=Bobby}$,	age=6 ,	sex=M $ angle$,	
$\langle name=Jan $,	age=12,	sex=F $ angle$,	
$\langle name=Peter $,	age=13,	sex=M $ angle$,	

Binary Classifier

One-Against-All

- Break k-class problem into k binary problems and solve separately
- Combine predictions: evaluate all *h*'s, hope exactly one is + (otherwise, take highest confidence)

One-Against-All

- Break k-class problem into k binary problems and solve separately
- Combine predictions: evaluate all *h*'s, hope exactly one is + (otherwise, take highest confidence)
- Incorrect prediction if only one is wrong

Does one vs. all work here?

Does one vs. all work here?

Discriminating between class 2 and the rest of the classes, the optimal halfspace would be the all negative classifier

All-Pairs (Friedman; Hastie & Tibshirani)

- One binary problem for each pair of classes
- Take class with most positives and least negatives
- Faster and more accurate than one-against-all

Time Comparison

Assume training time is $\mathcal{O}(m^{\alpha})$ and test time is $\mathcal{O}(c_t)$

	Training	Testing
OVA	$\mathcal{O}(km^{\alpha})$	$\mathcal{O}(kc_t)$
All-pairs	$\mathscr{O}\left(k^2\left(rac{m}{k} ight)^{lpha} ight)$	$\mathcal{O}(k^2 c_t)$

Time Comparison

Assume training time is $\mathscr{O}(m^{\alpha})$ and test time is $\mathscr{O}(c_t)$

	Training	Testing
OVA	$\mathcal{O}(km^{\alpha})$	$\mathcal{O}(kc_t)$
All-pairs	$\mathscr{O}\left(k^2\left(rac{m}{k} ight)^{lpha} ight)$	$\mathcal{O}(k^2 c_t)$

OVA better for testing time, all-pairs better for training. (All-pairs usually better for performance.)

Error Correcting Output Codes (Dietterich & Bakiri)

Reuce to binary using "coding" matrix

Error Correcting Output Codes (Dietterich & Bakiri)

- Reuce to binary using "coding" matrix
- Train classifier for each bit

		1		2		3		4		5	
<i>x</i> 1		<i>x</i> ₁	—	<i>x</i> 1	_	<i>x</i> 1	+	<i>x</i> 1	+	<i>x</i> 1	+
x 2		x ₂	+	x 2	+	x 2	—	<i>x</i> ₂	—	<i>x</i> ₂	—
<i>x</i> 3	\Rightarrow	<i>x</i> 3	+	<i>x</i> 3	+	<i>x</i> 3	+	<i>x</i> 3	+	<i>x</i> 3	—
<i>x</i> 4		X4	—	<i>x</i> 4	—	<i>x</i> 4	+	<i>x</i> 4	+	<i>x</i> 4	+
<i>x</i> 5		<i>x</i> 5	+	<i>x</i> 5	—	<i>x</i> 5	+	<i>x</i> 5	—	<i>x</i> 5	+
		1	ŀ	↓		↓		↓		↓	
		h	1	<i>h</i> ₂		h ₃		h ₄		h ₅	

Error Correcting Output Codes (Dietterich & Bakiri)

- Reuce to binary using "coding" matrix
- Train classifier for each bit

		1	L	2		3		4		5	
<i>x</i> ₁		<i>x</i> ₁	_	<i>x</i> 1	_	<i>x</i> ₁	+	<i>x</i> 1	+	<i>x</i> 1	+
<i>x</i> ₂		<i>x</i> ₂	+	<i>x</i> ₂	+	<i>x</i> ₂	—	<i>x</i> ₂	—	<i>x</i> ₂	—
<i>x</i> 3	\Rightarrow	<i>x</i> 3	+	<i>x</i> 3	—						
<i>x</i> 4		X4	_	X4	—	<i>x</i> 4	+	<i>X</i> 4	+	<i>x</i> 4	+
<i>x</i> 5		<i>x</i> 5	+	<i>x</i> 5	—	<i>x</i> 5	+	<i>x</i> 5	—	<i>x</i> 5	+
		1	ŀ	↓		↓		↓		↓	
		h h	1	<i>h</i> ₂		h ₃		h4		h ₅	

Choose closest row of coding matrix to predict

- If rows of M are far apart, will be robust to error
- Much faster if k is large
- Disadvantage: binary problems may be unnatural

How to construct codes

- Exhaustive (if k small):length $2^{k-1}-1$
 - Row 1 has only ones
 Row 2: 2^{k-2} zeros followed by 2^{k-2} 1 ones
 Row 3: 2^{k-3} zeros, 2^{k-3} ones, 2^{k-3} zeros, 2^{k-3} 1 ones
 ...

How to construct codes

- Exhaustive (if k small):length $2^{k-1}-1$
 - Row 1 has only ones
 Row 2: 2^{k-2} zeros followed by 2^{k-2}-1 ones
 Row 3: 2^{k-3} zeros, 2^{k-3} ones, 2^{k-3} zeros, 2^{k-3}-1 ones
 ...
- Random codes: James and Hastie '98 showed that this reduces variance through model averaging

That's it for classification!

- You can implement multiple forms of classification
- Derive theoretical bounds for many classification tasks
- Today is bridge to the future: classification foundation of other ML tasks