

Machine Learning

Machine Learning: Jordan Boyd-Graber University of Maryland

Policy Search

- Problem: often feature-based policies that work well aren't those that approximate V/Q best
- Solution: Find policies that maximize rewards rather than the value that predicts rewards
- Successful

Example: Imitation Learning

- Take examples of experts $\{(s_1, a_1)...\}$
- Learn a classifier mapping $s \rightarrow a$
- Create loss as the negative reward

Example: Imitation Learning

- Take examples of experts $\{(s_1, a_1)...\}$
- Learn a classifier mapping $s \rightarrow a$
- Create loss as the negative reward
- What if we diverge?

- Find optimal policies through dynamic programming $\pi_0 \equiv \pi *$
- Represent states s through a feature vector $\vec{f}(s)$

- Find optimal policies through dynamic programming $\pi_0 \equiv \pi *$
- Represent states s through a feature vector $\vec{f}(s)$
- Until convergence:
 - Generate examples of state action pairs: $(\pi_t(s), s)$
 - Create a classifier that maps states to actions (an apprentice policy) $h_t: f(s) \mapsto A$
 - □ Interpolate learned classifier $\pi_{t+1} = \lambda \pi_t + (1-\lambda)h_t$

- Find optimal policies through dynamic programming $\pi_0 \equiv \pi *$
- Represent states s through a feature vector $\vec{f}(s)$
- Until convergence:
 - Generate examples of state action pairs: $(\pi_t(s), s)$
 - Create a classifier that maps states to actions (an apprentice policy) $h_t: f(s) \mapsto A$ (Loss of classifier is the negative reward)
 - □ Interpolate learned classifier $\pi_{t+1} = \lambda \pi_t + (1-\lambda)h_t$

- Find optimal policies through dynamic programming $\pi_0 \equiv \pi *$
- Represent states s through a feature vector $\vec{f}(s)$
- Until convergence:
 - Generate examples of state action pairs: $(\pi_t(s), s)$
 - Create a classifier that maps states to actions (an apprentice policy) $h_t: f(s) \mapsto A$ (Loss of classifier is the negative reward)
 - □ Interpolate learned classifier $\pi_{t+1} = \lambda \pi_t + (1-\lambda)h_t$
- DAGGER: Dataset aggregation [Ross, Gordon & Bagnell, 2010]
- searn: Searching to Learn [Daumé & Marcu, 2006]

Applications of Imitation Learning

- Car driving
- Flying helicopters
- Question answering
- Machine translation

Applications of Imitation Learning

- Car driving
- Flying helicopters
- Question answering
- Machine translation

Question Answering

Question Answering

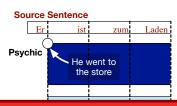
• State: The words seen, opponent

Action: Buzz or wait

• Reward: Points

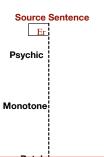
Why machine translation really hard is

- State: The words you've seen, output of machine translation system
- Action: Take translation, predict the verb
- **Reward**: Translation quality

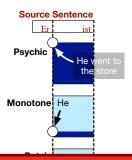


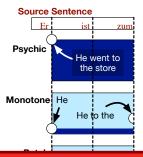
Good Translation

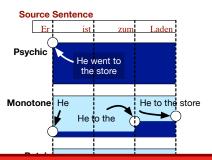
Bad Translation

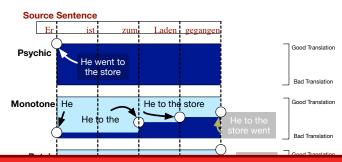


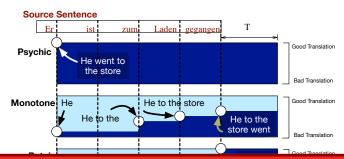


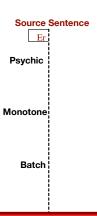


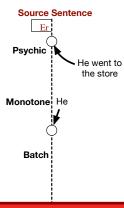


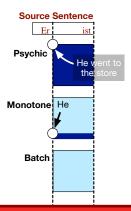


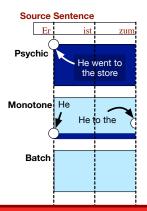


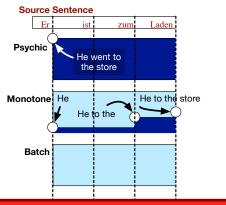


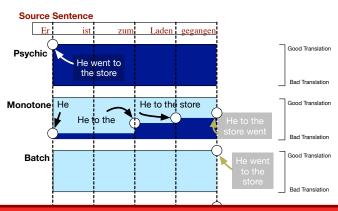


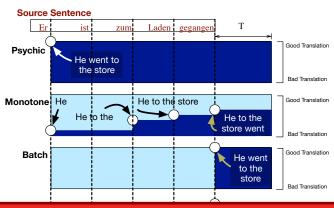


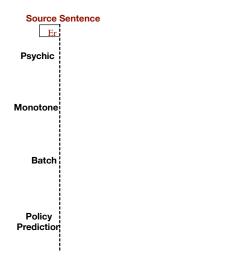


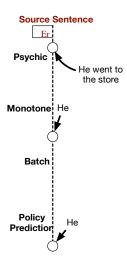


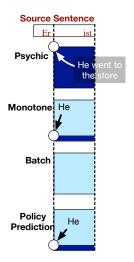


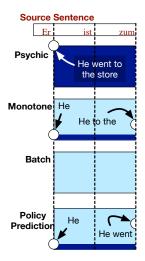


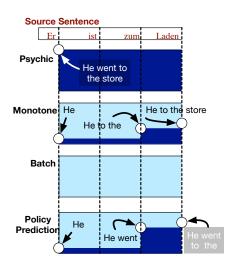


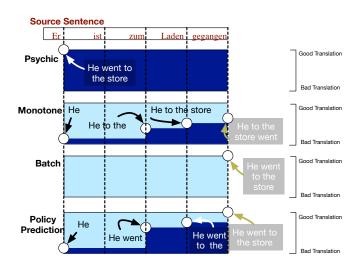


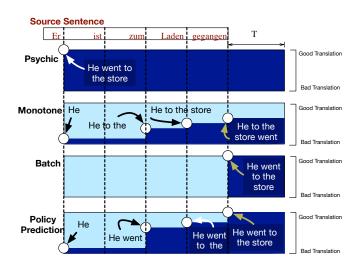


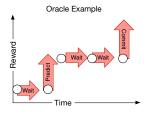


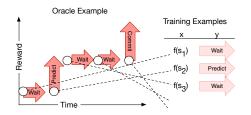


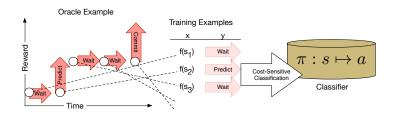


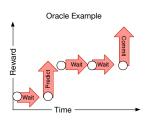


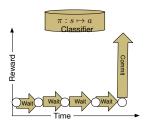


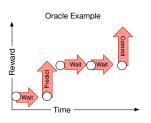


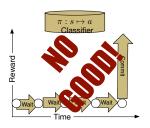


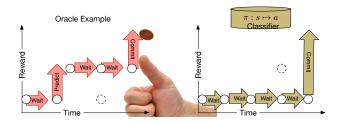


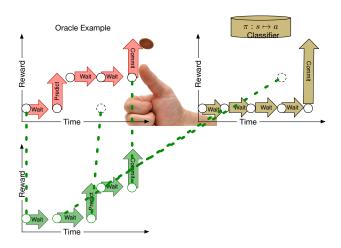


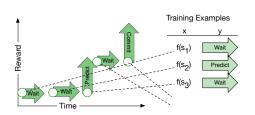


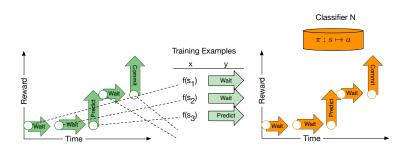












Recap

- Learning from examples: immitation learning
- Role of supervised machine learning
- Room for deep learning . . .