Long Short Term Memory Networks

Fenfei Guo and Jordan Boyd-Graber University of Maryland
LSTM EXAMPLE

Recap of LSTM

Three gates: input $\left(i_{t}\right)$, forget $\left(f_{t}\right)$, out (o_{t})
$\tilde{c}_{t}=\tanh \left(W_{i c} x_{t}+b_{i c}+W_{h c} h_{t-1}+b_{h c}\right)$

$$
\begin{aligned}
i_{t} & =\sigma\left(W_{i i} x_{t}+b_{i i}+W_{h i} h_{t-1}+b_{h i}\right) \\
f_{t} & =\sigma\left(W_{i f} x_{t}+b_{i f}+W_{h f} h_{t-1}+b_{h f}\right) \\
o_{t} & =\sigma\left(W_{i o} x_{t}+b_{i o}+W_{h o} h_{t-1}+b_{h o}\right)
\end{aligned}
$$

$$
\begin{aligned}
& c_{t}=f_{t} * c_{t-1}+i_{t} * \tilde{c}_{t} \\
& h_{t}=o_{t} * \tanh \left(c_{t}\right)
\end{aligned}
$$

Figuring out this LSTM

- input sequence: $\mathrm{A}, \mathrm{A}, \mathrm{B}$

$$
x_{1}=[1.0,0.0] \quad x_{2}=[1.0,0.0] \quad x_{3}=[0.0,1.0]
$$

Figuring out this LSTM

A B
 $1.0 \quad 0.0$
 $0.0 \quad 1.0$

- input: A, A, B

$$
x_{1}=[1.0,0.0] \quad x_{2}=[1.0,0.0] \quad x_{3}=[0.0,1.0]
$$

- prediction output:

$$
y_{t}=\operatorname{softmax}\left(h_{t}\right) \quad[\text { number of hidden nodes }=2]
$$

Model parameters for x_{t}

cell params

$$
W_{i c}=\left[\begin{array}{rr}
1 & 3 \tag{3}\\
0 & -3
\end{array}\right]
$$

output gate

$$
W_{\text {if }}=\left[\begin{array}{rr}
-2 & 3 \tag{2}\\
2 & 3
\end{array}\right]
$$

$$
W_{i o}=\left[\begin{array}{ll}
5 & 5 \tag{4}\\
3 & 5
\end{array}\right]
$$

Set all $b=0$ for simplicity

Model parameters for h_{t}

input gate

$$
W_{h i}=\left[\begin{array}{rr}
1 & 0 \tag{5}\\
4 & -2
\end{array}\right]
$$

forget gate

$$
W_{h f}=\left[\begin{array}{rr}
-1 & -2 \tag{6}\\
0 & 0
\end{array}\right]
$$

cell params

$$
W_{h c}=\left[\begin{array}{rr}
-4 & -8 \tag{7}\\
4 & 3
\end{array}\right]
$$

output gate

$$
W_{n o}=\left[\begin{array}{ll}
1 & 0 \tag{8}\\
2 & 1
\end{array}\right]
$$

Set all $b=0$ for simplicity

Inputs

- Initial hidden states:

$$
h_{0}=[0.0,0.0]^{\top}
$$

- Initial memory input:

$$
c_{0}=[0.0,0.0]^{\top}
$$

- Input sequences in time:

$$
x_{1}=\left[\begin{array}{l}
1.0 \\
1.0
\end{array}\right] \quad x_{2}=\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right] \quad x_{3}=\left[\begin{array}{l}
0.0 \\
1.0
\end{array}\right]
$$

Forwards at time step 1: i_{1}

Input's input gate

$$
W_{i i}=\left[\begin{array}{ll}
4 & 4 \tag{9}\\
2 & 2
\end{array}\right]
$$

$$
W_{h i}=\left[\begin{array}{rr}
1 & 0 \tag{10}\\
4 & -2
\end{array}\right]
$$

Compute

$$
\begin{equation*}
i_{1}=\sigma\left(W_{i i} x_{1}+W_{h i} h_{0}\right) \tag{11}
\end{equation*}
$$

Forwards at time step 1: i_{1}

Input's input gate

$$
W_{i i}=\left[\begin{array}{ll}
4 & 4 \tag{9}\\
2 & 2
\end{array}\right]
$$

input gate

$$
W_{h i}=\left[\begin{array}{rr}
1 & 0 \tag{10}\\
4 & -2
\end{array}\right]
$$

Compute

$$
\begin{align*}
i_{1} & =\sigma\left(W_{i i} x_{1}+W_{n i} h_{0}\right) \tag{11}\\
& =\sigma\left(\left[\begin{array}{ll}
4 & 4 \\
2 & 2
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]\right) \tag{12}
\end{align*}
$$

Forwards at time step 1: i_{1}

Input's input gate

$$
W_{i i}=\left[\begin{array}{ll}
4 & 4 \tag{9}\\
2 & 2
\end{array}\right]
$$

Compute

$$
\begin{align*}
i_{1} & =\sigma\left(W_{i i} x_{1}+W_{h i} h_{0}\right) \tag{11}\\
& =\sigma\left(\left[\begin{array}{ll}
4 & 4 \\
2 & 2
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]\right) \tag{12}\\
& =\sigma\left([4.0,2.0]^{\top}\right) \tag{13}
\end{align*}
$$

Forwards at time step 1: i_{1}

Input's input gate

$$
W_{i i}=\left[\begin{array}{ll}
4 & 4 \tag{9}\\
2 & 2
\end{array}\right]
$$

input gate

$$
W_{h i}=\left[\begin{array}{rr}
1 & 0 \tag{10}\\
4 & -2
\end{array}\right]
$$

Compute

$$
\begin{align*}
i_{1} & =\sigma\left(W_{i i} x_{1}+W_{h i} h_{0}\right) \tag{11}\\
& =\sigma\left(\left[\begin{array}{ll}
4 & 4 \\
2 & 2
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]\right) \tag{12}\\
& =\sigma\left([4.0,2.0]^{\top}\right) \tag{13}\\
& =[1.0,0.9]^{\top} \tag{14}
\end{align*}
$$

Forwards at time step 1: f_{1}
forget gate

$$
W_{i f}=\left[\begin{array}{rr}
-2 & 3 \tag{15}\\
2 & 3
\end{array}\right]
$$

$$
W_{h f}=\left[\begin{array}{rr}
-1 & -2 \tag{16}\\
0 & 0
\end{array}\right]
$$

Compute

$$
\begin{equation*}
f_{1}=\sigma\left(W_{i f} x_{1}+W_{h f} h_{0}\right) \tag{17}
\end{equation*}
$$

Forwards at time step 1: f_{1}

forget gate

$$
W_{i f}=\left[\begin{array}{rr}
-2 & 3 \tag{15}\\
2 & 3
\end{array}\right]
$$

forget gate

$$
W_{h f}=\left[\begin{array}{rr}
-1 & -2 \tag{16}\\
0 & 0
\end{array}\right]
$$

Compute

$$
\begin{align*}
f_{1} & =\sigma\left(W_{i f} x_{1}+W_{h f} h_{0}\right) \tag{17}\\
& =\sigma\left(\left[\begin{array}{rr}
-2 & 3 \\
2 & 3
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]\right) \tag{18}
\end{align*}
$$

Forwards at time step 1: f_{1}

forget gate

$$
W_{i f}=\left[\begin{array}{rr}
-2 & 3 \tag{15}\\
2 & 3
\end{array}\right]
$$

$$
W_{h f}=\left[\begin{array}{rr}
-1 & -2 \tag{16}\\
0 & 0
\end{array}\right]
$$

Compute

$$
\begin{align*}
f_{1} & =\sigma\left(W_{i f} x_{1}+W_{h f} h_{0}\right) \tag{17}\\
& =\sigma\left(\left[\begin{array}{rr}
-2 & 3 \\
2 & 3
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]\right) \tag{18}\\
& =\sigma\left([-2.0,2.0]^{\top}\right) \tag{19}
\end{align*}
$$

Forwards at time step 1: f_{1}

forget gate

$$
W_{i f}=\left[\begin{array}{rr}
-2 & 3 \tag{15}\\
2 & 3
\end{array}\right]
$$

$$
W_{h f}=\left[\begin{array}{rr}
-1 & -2 \tag{16}\\
0 & 0
\end{array}\right]
$$

Compute

$$
\begin{align*}
f_{1} & =\sigma\left(W_{i f} x_{1}+W_{h f} h_{0}\right) \tag{17}\\
& =\sigma\left(\left[\begin{array}{rr}
-2 & 3 \\
2 & 3
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]\right) \tag{18}\\
& =\sigma\left([-2.0,2.0]^{\top}\right) \tag{19}\\
& =[0.1,0.9]^{\top} \tag{20}
\end{align*}
$$

Forwards at time step 1: o_{1}

output gate

$$
W_{i o}=\left[\begin{array}{ll}
5 & 5 \tag{21}\\
3 & 5
\end{array}\right]
$$

- $o_{1}=\sigma\left(W_{i o} x_{1}+W_{h o} h_{0}\right)$

output gate

$$
W_{h o}=\left[\begin{array}{ll}
1 & 0 \tag{22}\\
2 & 1
\end{array}\right]
$$

Forwards at time step 1: o_{1}

output gate

$$
W_{i o}=\left[\begin{array}{ll}
5 & 5 \tag{21}\\
3 & 5
\end{array}\right]
$$

- $o_{1}=\sigma\left(W_{i 0} x_{1}+W_{h o} h_{0}\right)$

$$
=\sigma\left(\left[\begin{array}{ll}
5 & 5 \\
3 & 5
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]\right)
$$

Forwards at time step 1: o_{1}

output gate

$$
W_{i o}=\left[\begin{array}{ll}
5 & 5 \tag{21}\\
3 & 5
\end{array}\right]
$$

output gate

$$
W_{h o}=\left[\begin{array}{ll}
1 & 0 \tag{22}\\
2 & 1
\end{array}\right]
$$

- $o_{1}=\sigma\left(W_{i 0} x_{1}+W_{h o} h_{0}\right)$

$$
=\sigma\left(\left[\begin{array}{ll}
5 & 5 \\
3 & 5
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]\right)=\sigma\left([5.0,3.0]^{\top}\right)
$$

Forwards at time step 1: o_{1}

output gate

$$
W_{i o}=\left[\begin{array}{ll}
5 & 5 \tag{21}\\
3 & 5
\end{array}\right]
$$

output gate

$$
W_{h o}=\left[\begin{array}{ll}
1 & 0 \tag{22}\\
2 & 1
\end{array}\right]
$$

- $o_{1}=\sigma\left(W_{i 0} x_{1}+W_{h o} h_{0}\right)$
$=\sigma\left(\left[\begin{array}{ll}5 & 5 \\ 3 & 5\end{array}\right] \times\left[\begin{array}{l}1.0 \\ 0.0\end{array}\right]\right)=\sigma\left([5.0,3.0]^{\top}\right)$
$=[1.0,1.0]^{\top}$

Forwards at time step 1: \tilde{c}_{1}

cell params

$$
W_{i c}=\left[\begin{array}{rr}
1 & 3 \tag{23}\\
0 & -3
\end{array}\right]
$$

$$
W_{h c}=\left[\begin{array}{rr}
-4 & -8 \tag{24}\\
4 & 3
\end{array}\right]
$$

- $\tilde{c_{1}}=\tanh \left(W_{i c} x_{1}+W_{h c} h_{0}\right)$

Forwards at time step 1: \tilde{c}_{1}

cell params

$$
W_{i c}=\left[\begin{array}{rr}
1 & 3 \tag{23}\\
0 & -3
\end{array}\right]
$$

$$
W_{h c}=\left[\begin{array}{rr}
-4 & -8 \tag{24}\\
4 & 3
\end{array}\right]
$$

cell params

- $\tilde{c_{1}}=\tanh \left(W_{i c} x_{1}+W_{h c} h_{0}\right)$

$$
=\tanh \left(\left[\begin{array}{rr}
1 & 3 \\
0 & -3
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]\right)
$$

Forwards at time step 1: \tilde{c}_{1}

cell params

$$
W_{i c}=\left[\begin{array}{rr}
1 & 3 \tag{23}\\
0 & -3
\end{array}\right]
$$

$$
W_{h c}=\left[\begin{array}{rr}
-4 & -8 \tag{24}\\
4 & 3
\end{array}\right]
$$

- $\tilde{c_{1}}=\tanh \left(W_{i c} x_{1}+W_{h c} h_{0}\right)$

$$
=\tanh \left(\left[\begin{array}{rr}
1 & 3 \\
0 & -3
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]\right)=\tanh \left([1.0,0.0]^{\top}\right)
$$

Forwards at time step 1: \tilde{c}_{1}

cell params

$$
W_{i c}=\left[\begin{array}{rr}
1 & 3 \tag{23}\\
0 & -3
\end{array}\right]
$$

$$
W_{h c}=\left[\begin{array}{rr}
-4 & -8 \tag{24}\\
4 & 3
\end{array}\right]
$$

- $\tilde{c_{1}}=\tanh \left(W_{i c} x_{1}+W_{h c} h_{0}\right)$

$$
=\tanh \left(\left[\begin{array}{rr}
1 & 3 \\
0 & -3
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]\right)=\tanh \left([1.0,0.0]^{\top}\right)=[0.8,0.0]^{\top}
$$

Forwards at time step 1

f_{1}	c_{0}	i_{1}	\tilde{c}_{1}
$[0.1,0.9]^{\top}$	$[0.0,0.0]^{\top}$	$[1.0,0.9]^{\top}$	$[0.8,0.0]^{\top}$

- Message forward (c_{1})

$$
\begin{equation*}
c_{1}=f_{1} \circ c_{0}+i_{1} \circ \tilde{c_{1}} \tag{25}
\end{equation*}
$$

Forwards at time step 1

f_{1}	c_{0}	i_{1}	\tilde{c}_{1}
$[0.1,0.9]^{\top}$	$[0.0,0.0]^{\top}$	$[1.0,0.9]^{\top}$	$[0.8,0.0]^{\top}$

- Message forward (c_{1})

$$
\begin{align*}
c_{1} & =f_{1} \circ c_{0}+i_{1} \circ \tilde{c_{1}} \tag{25}\\
& =[1.0,0.9]^{\top} \circ[0.8,0.0]^{\top} \tag{26}
\end{align*}
$$

Forwards at time step 1

f_{1}	c_{0}	i_{1}	\tilde{c}_{1}
$[0.1,0.9]^{\top}$	$[0.0,0.0]^{\top}$	$[1.0,0.9]^{\top}$	$[0.8,0.0]^{\top}$

- Message forward (c_{1})

$$
\begin{align*}
c_{1} & =f_{1} \circ c_{0}+i_{1} \circ \tilde{c_{1}} \tag{25}\\
& =[1.0,0.9]^{\top} \circ[0.8,0.0]^{\top} \tag{26}
\end{align*}
$$

Forwards at time step 1

- Message forward (c_{1})

$$
\begin{equation*}
c_{1}=[0.8,0.0]^{\top} \tag{25}
\end{equation*}
$$

- New hidden $\left(h_{1}\right)$

$$
\begin{equation*}
h_{1} \tag{26}
\end{equation*}
$$

Forwards at time step 1

f_{1}	c_{0}	i_{1}	\tilde{c}_{1}
$[0.1,0.9]^{\top}$	$[0.0,0.0]^{\top}$	$[1.0,0.9]^{\top}$	$[0.8,0.0]^{\top}$

- Message forward (c_{1})

$$
\begin{equation*}
c_{1}=[0.8,0.0]^{\top} \tag{25}
\end{equation*}
$$

- New hidden $\left(h_{1}\right)$

$$
\begin{equation*}
h_{1}=o_{1} \circ \tanh \left(c_{1}\right) \tag{26}
\end{equation*}
$$

Forwards at time step 1

f_{1}	c_{0}	i_{1}	\tilde{c}_{1}
$[0.1,0.9]^{\top}$	$[0.0,0.0]^{\top}$	$[1.0,0.9]^{\top}$	$[0.8,0.0]^{\top}$

- Message forward (c_{1})

$$
\begin{equation*}
c_{1}=[0.8,0.0]^{\top} \tag{25}
\end{equation*}
$$

- New hidden $\left(h_{1}\right)$

$$
\begin{align*}
h_{1} & =o_{1} \circ \tanh \left(c_{1}\right) \tag{26}\\
& =[1.0,1.0]^{\top} \circ \tanh \left([0.8,0.0]^{\top}\right) \tag{27}
\end{align*}
$$

Forwards at time step 1

- Message forward (c_{1})

$$
\begin{equation*}
c_{1}=[0.8,0.0]^{\top} \tag{25}
\end{equation*}
$$

- New hidden $\left(h_{1}\right)$

$$
\begin{align*}
h_{1} & =o_{1} \circ \tanh \left(c_{1}\right) \tag{26}\\
& =[1.0,1.0]^{\top} \circ \tanh \left([0.8,0.0]^{\top}\right) \tag{27}\\
& =[0.7,0.0]^{\top} \tag{28}
\end{align*}
$$

Forwards at time step 1

- Message forward (c_{1})

$$
\begin{equation*}
c_{1}=[0.8,0.0]^{\top} \tag{25}
\end{equation*}
$$

- New hidden $\left(h_{1}\right)$

$$
\begin{equation*}
h_{1}=[0.7,0.0]^{\top} \tag{26}
\end{equation*}
$$

- Prediction $y_{1}=\operatorname{softmax}\left(h_{1}\right)$

Forwards at time step 2
$t=2$ State
$x_{2}=[1.0,0.0]^{\top} ; c_{1}=[0.8,0.0]^{\top} ; h_{1}=[0.7,0.0]^{\top}$

Input's input gate

$$
\begin{gather*}
W_{i i}=\left[\begin{array}{ll}
4 & 4 \\
2 & 2
\end{array}\right] \quad(27) \quad W_{h i}=\left[\begin{array}{rr}
1 & 0 \\
4 & -2
\end{array}\right] \tag{27}\\
i_{2}=\sigma\left(W_{i i} x_{2}+W_{h i} h_{1}\right)
\end{gather*}
$$

Forwards at time step 2

$t=2$ State

$x_{2}=[1.0,0.0]^{\top} ; c_{1}=[0.8,0.0]^{\top} ; h_{1}=[0.7,0.0]^{\top}$

Input's input gate

$$
W_{i i}=\left[\begin{array}{ll}
4 & 4 \tag{27}\\
2 & 2
\end{array}\right]
$$

$$
\begin{align*}
i_{2} & =\sigma\left(W_{i i} x_{2}+W_{h i} h_{1}\right) \tag{29}\\
& =\sigma\left(\left[\begin{array}{lr}
4 & 4 \\
2 & 2
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]+\left[\begin{array}{rr}
1 & 0 \\
4 & -2
\end{array}\right] \times\left[\begin{array}{l}
0.7 \\
0.0
\end{array}\right]\right) \tag{30}
\end{align*}
$$

Forwards at time step 2
$t=2$ State
$x_{2}=[1.0,0.0]^{\top} ; c_{1}=[0.8,0.0]^{\top} ; h_{1}=[0.7,0.0]^{\top}$

Input's input gate

$$
W_{i i}=\left[\begin{array}{ll}
4 & 4 \tag{27}\\
2 & 2
\end{array}\right]
$$

$$
\begin{align*}
i_{2} & =\sigma\left(W_{i i} x_{2}+W_{h i} h_{1}\right) \tag{29}\\
& =\sigma\left(\left[\begin{array}{ll}
4 & 4 \\
2 & 2
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]+\left[\begin{array}{rr}
1 & 0 \\
4 & -2
\end{array}\right] \times\left[\begin{array}{c}
0.7 \\
0.0
\end{array}\right]\right) \tag{30}\\
& =\sigma\left([4.0,2.0]^{\top}+[0.7,2.8]^{\top}\right) \tag{31}
\end{align*}
$$

Forwards at time step 2
$t=2$ State
$x_{2}=[1.0,0.0]^{\top} ; c_{1}=[0.8,0.0]^{\top} ; h_{1}=[0.7,0.0]^{\top}$

Input's input gate

$$
W_{i i}=\left[\begin{array}{ll}
4 & 4 \tag{27}\\
2 & 2
\end{array}\right]
$$

$$
\begin{align*}
i_{2} & =\sigma\left(W_{i i} x_{2}+W_{h i} h_{1}\right) \tag{29}\\
& =\sigma\left(\left[\begin{array}{ll}
4 & 4 \\
2 & 2
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]+\left[\begin{array}{rr}
1 & 0 \\
4 & -2
\end{array}\right] \times\left[\begin{array}{l}
0.7 \\
0.0
\end{array}\right]\right) \tag{30}\\
& =\sigma\left([4.0,2.0]^{\top}+[0.7,2.8]^{\top}\right)=\sigma\left([4.7,4.8]^{\top}\right) \tag{31}\\
& =[1.0,1.0]^{\top} \tag{32}
\end{align*}
$$

Forwards at time step 2
$t=2$ State
$x_{2}=[1.0,0.0]^{\top} ; c_{1}=[0.8,0.0]^{\top} ; h_{1}=[0.7,0.0]^{\top}$

Input's input gate

$$
\begin{gather*}
W_{i i}=\left[\begin{array}{ll}
4 & 4 \\
2 & 2
\end{array}\right] \quad(33) \quad W_{h i}=\left[\begin{array}{rr}
1 & 0 \\
4 & -2
\end{array}\right] \tag{33}\\
f_{2}=\sigma\left(W_{i f} x_{2}+W_{h f} h_{1}\right)
\end{gather*}
$$

Forwards at time step 2

$t=2$ State

$x_{2}=[1.0,0.0]^{\top} ; c_{1}=[0.8,0.0]^{\top} ; h_{1}=[0.7,0.0]^{\top}$

Input's input gate

$$
W_{i i}=\left[\begin{array}{ll}
4 & 4 \tag{33}\\
2 & 2
\end{array}\right]
$$

$$
\begin{align*}
f_{2} & =\sigma\left(W_{i f} x_{2}+W_{h f} h_{1}\right) \tag{35}\\
& =\sigma\left(\left[\begin{array}{rr}
-2 & 3 \\
2 & 3
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]+\left[\begin{array}{rr}
-1 & -2 \\
0 & 0
\end{array}\right] \times\left[\begin{array}{l}
0.7 \\
0.0
\end{array}\right]\right) \tag{3}
\end{align*}
$$

Forwards at time step 2
$t=2$ State
$x_{2}=[1.0,0.0]^{\top} ; c_{1}=[0.8,0.0]^{\top} ; h_{1}=[0.7,0.0]^{\top}$

Input's input gate

$$
W_{i i}=\left[\begin{array}{ll}
4 & 4 \tag{33}\\
2 & 2
\end{array}\right]
$$

$$
\begin{align*}
f_{2} & =\sigma\left(W_{i f} x_{2}+W_{h f} h_{1}\right) \tag{35}\\
& =\sigma\left(\left[\begin{array}{rr}
-2 & 3 \\
2 & 3
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]+\left[\begin{array}{rr}
-1 & -2 \\
0 & 0
\end{array}\right] \times\left[\begin{array}{l}
0.7 \\
0.0
\end{array}\right]\right) \tag{36}\\
& =\sigma\left([-2.0,2.0]^{\top}+[-0.7,0.0]^{\top}\right) \tag{37}
\end{align*}
$$

Forwards at time step 2
$t=2$ State
$x_{2}=[1.0,0.0]^{\top} ; c_{1}=[0.8,0.0]^{\top} ; h_{1}=[0.7,0.0]^{\top}$

Input's input gate

$$
W_{i i}=\left[\begin{array}{ll}
4 & 4 \tag{33}\\
2 & 2
\end{array}\right]
$$

$$
\begin{align*}
f_{2} & =\sigma\left(W_{i f} x_{2}+W_{h f} h_{1}\right) \tag{35}\\
& =\sigma\left(\left[\begin{array}{rr}
-2 & 3 \\
2 & 3
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]+\left[\begin{array}{rr}
-1 & -2 \\
0 & 0
\end{array}\right] \times\left[\begin{array}{l}
0.7 \\
0.0
\end{array}\right]\right) \tag{36}\\
& =\sigma\left([-2.0,2.0]^{\top}+[-0.7,0.0]^{\top}\right) \tag{37}\\
& =\sigma\left([-2.7,2.0]^{\top}\right)=[0.1,0.9]^{\top} \tag{38}
\end{align*}
$$

Forwards at time step 2
$t=2$ State
$x_{2}=[1.0,0.0]^{\top} ; c_{1}=[0.8,0.0]^{\top} ; h_{1}=[0.7,0.0]^{\top}$

output gate

$$
\begin{gather*}
W_{i o}=\left[\begin{array}{ll}
5 & 5 \\
3 & 5
\end{array}\right] \quad(39) \quad W_{h o}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \\
o_{2}=\sigma\left(W_{i o} x_{2}+W_{h o} h_{1}\right) \tag{41}
\end{gather*}
$$

Forwards at time step 2

$t=2$ State

$x_{2}=[1.0,0.0]^{\top} ; c_{1}=[0.8,0.0]^{\top} ; h_{1}=[0.7,0.0]^{\top}$

output gate

$$
W_{i o}=\left[\begin{array}{ll}
5 & 5 \tag{39}\\
3 & 5
\end{array}\right]
$$

$$
\begin{align*}
o_{2} & =\sigma\left(W_{i o} x_{2}+W_{h o} h_{1}\right) \tag{41}\\
& =\sigma\left(\left[\begin{array}{ll}
5 & 5 \\
3 & 5
\end{array}\right] \times\left[\begin{array}{ll}
1.0 \\
0.0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \times\left[\begin{array}{c}
0.7 \\
0.0
\end{array}\right]\right) \tag{42}
\end{align*}
$$

Forwards at time step 2
$t=2$ State
$x_{2}=[1.0,0.0]^{\top} ; c_{1}=[0.8,0.0]^{\top} ; h_{1}=[0.7,0.0]^{\top}$

output gate

output gate

$$
\begin{align*}
& W_{i o}=\left[\begin{array}{ll}
5 & 5 \\
3 & 5
\end{array}\right] \quad W_{h o}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \tag{39}\\
& o_{2}=\sigma\left(W_{i o} x_{2}+W_{h o} h_{1}\right) \tag{40}\\
&=\sigma\left(\left[\begin{array}{ll}
5 & 5 \\
3 & 5
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \times\left[\begin{array}{l}
0.7 \\
0.0
\end{array}\right]\right) \tag{41}\\
&=\sigma\left([5.0,3.0]^{\top}+[0.7,1.4]^{\top}\right) \tag{42}
\end{align*}
$$

Forwards at time step 2
$t=2$ State
$x_{2}=[1.0,0.0]^{\top} ; c_{1}=[0.8,0.0]^{\top} ; h_{1}=[0.7,0.0]^{\top}$

output gate

output gate

$$
\begin{align*}
& W_{i o}=\left[\begin{array}{ll}
5 & 5 \\
3 & 5
\end{array}\right] \quad(39) \quad W_{h o}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \tag{39}\\
& o_{2}=\sigma\left(W_{i o} x_{2}+W_{h o} h_{1}\right) \tag{40}\\
&=\sigma\left(\left[\begin{array}{ll}
5 & 5 \\
3 & 5
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \times\left[\begin{array}{l}
0.7 \\
0.0
\end{array}\right]\right) \tag{41}\\
&=\sigma\left([5.0,3.0]^{\top}+[0.7,1.4]^{\top}\right) \tag{42}\\
&=\sigma\left([5.7,4.4]^{\top}\right)=[1.0,1.0]^{\top} \tag{43}
\end{align*}
$$

Forwards at time step 2
$t=2$ State
$x_{2}=[1.0,0.0]^{\top} ; c_{1}=[0.8,0.0]^{\top} ; h_{1}=[0.7,0.0]^{\top}$

cell params

$$
W_{i c}=\left[\begin{array}{rr}
1 & 3 \\
0 & -3
\end{array}\right] \quad \text { (45) } \quad W_{h c}=\left[\begin{array}{rr}
-4 & -8 \tag{46}\\
4 & 3
\end{array}\right]
$$

$$
\begin{equation*}
\tilde{c_{2}}=\tanh \left(W_{i c} x_{2}+W_{h c} h_{1}\right) \tag{47}
\end{equation*}
$$

Forwards at time step 2
$t=2$ State
$x_{2}=[1.0,0.0]^{\top} ; c_{1}=[0.8,0.0]^{\top} ; h_{1}=[0.7,0.0]^{\top}$

$$
W_{i c}=\left[\begin{array}{rr}
1 & 3 \\
0 & -3
\end{array}\right] \quad(45) \quad W_{h c}=\left[\begin{array}{rr}
-4 & -8 \\
4 & 3
\end{array}\right]
$$

cell params

$$
\begin{equation*}
\tilde{c_{2}}=\tanh \left(W_{i c} x_{2}+W_{h c} h_{1}\right) \tag{47}
\end{equation*}
$$

$$
=\tanh \left(\left[\begin{array}{rr}
1 & 3 \tag{48}\\
0 & -3
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]+\left[\begin{array}{rr}
-4 & -8 \\
4 & 3
\end{array}\right] \times\left[\begin{array}{l}
0.7 \\
0.0
\end{array}\right]\right)
$$

Forwards at time step 2
$t=2$ State
$x_{2}=[1.0,0.0]^{\top} ; c_{1}=[0.8,0.0]^{\top} ; h_{1}=[0.7,0.0]^{\top}$

cell params

cell params

$$
\begin{align*}
W_{i c}= & {\left[\begin{array}{rr}
1 & 3 \\
0 & -3
\end{array}\right] \quad W_{h c}=\left[\begin{array}{rr}
-4 & -8 \\
4 & 3
\end{array}\right] } \\
\tilde{c_{2}} & =\tanh \left(W_{i c} x_{2}+W_{h c} h_{1}\right) \tag{47}\\
& =\tanh \left(\left[\begin{array}{rr}
1 & 3 \\
0 & -3
\end{array}\right] \times\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right]+\left[\begin{array}{rr}
-4 & -8 \\
4 & 3
\end{array}\right] \times\left[\begin{array}{c}
0.7 \\
0.0
\end{array}\right]\right) \tag{48}\\
& =\tanh \left([1.0,0.0]^{\top}+[-2.8,2.8]^{\top}\right) \tag{49}
\end{align*}
$$

Forwards at time step 2
$t=2$ State
$x_{2}=[1.0,0.0]^{\top} ; c_{1}=[0.8,0.0]^{\top} ; h_{1}=[0.7,0.0]^{\top}$

cell params

cell params

$$
\begin{align*}
W_{i c}= & {\left[\begin{array}{rr}
1 & 3 \\
0 & -3
\end{array}\right] \quad(45) \quad W_{h c}=\left[\begin{array}{rr}
-4 & -8 \\
4 & 3
\end{array}\right] } \tag{45}\\
\tilde{c_{2}} & =\tanh \left(W_{i c} x_{2}+W_{h c} h_{1}\right) \tag{46}\\
& =\tanh \left(\left[\begin{array}{rr}
1 & 3 \\
0 & -3
\end{array}\right] \times\left[\begin{array}{r}
1.0 \\
0.0
\end{array}\right]+\left[\begin{array}{rr}
-4 & -8 \\
4 & 3
\end{array}\right] \times\left[\begin{array}{r}
0.7 \\
0.0
\end{array}\right]\right) \tag{47}\\
& =\tanh \left([1.0,0.0]^{\top}+[-2.8,2.8]^{\top}\right) \tag{48}\\
& =\tanh \left([-1.8,2.8]^{\top}\right)=[-0.9,1.0]^{\top} \tag{49}
\end{align*}
$$

Forwards at time step 2

- Message

C_{1}

$[0.8,0.0]^{\top}$

$$
\begin{equation*}
c_{2}=f_{2} \circ c_{1}+i_{2} \circ \tilde{c_{2}} \tag{51}
\end{equation*}
$$

- Hidden

Forwards at time step 2

\tilde{c}_{2}	i_{2}	f_{2}	c_{1}
$[-0.9,1.0]^{\top}$	$[1.0,1.0]^{\top}$	$[0.1,0.9]^{\top}$	$[0.8,0.0]^{\top}$

- Message

$$
\begin{align*}
c_{2} & =f_{2} \circ c_{1}+i_{2} \circ \tilde{c_{2}} \tag{51}\\
& =[0.1,0.9]^{\top} \circ[0.8,0.0]^{\top}+[1.0,1.0]^{\top} \circ[-0.9,1.0]^{\top} \tag{52}
\end{align*}
$$

- Hidden

Forwards at time step 2

\tilde{c}_{2}	i_{2}	f_{2}	c_{1}
$[-0.9,1.0]^{\top}$	$[1.0,1.0]^{\top}$	$[0.1,0.9]^{\top}$	$[0.8,0.0]^{\top}$

- Message

$$
\begin{align*}
c_{2} & =f_{2} \circ c_{1}+i_{2} \circ \tilde{c_{2}} \tag{51}\\
& =[0.1,0.9]^{\top} \circ[0.8,0.0]^{\top}+[1.0,1.0]^{\top} \circ[-0.9,1.0]^{\top} \tag{52}\\
& =[-0.8,1.0]^{\top} \tag{53}
\end{align*}
$$

- Hidden

Forwards at time step 2

\tilde{c}_{2}	i_{2}	f_{2}	c_{1}
$[-0.9,1.0]^{\top}$	$[1.0,1.0]^{\top}$	$[0.1,0.9]^{\top}$	$[0.8,0.0]^{\top}$

- Message

$$
\begin{align*}
c_{2} & =f_{2} \circ c_{1}+i_{2} \circ \tilde{c}_{2} \tag{51}\\
& =[0.1,0.9]^{\top} \circ[0.8,0.0]^{\top}+[1.0,1.0]^{\top} \circ[-0.9,1.0]^{\top} \tag{52}\\
& =[-0.8,1.0]^{\top} \tag{53}
\end{align*}
$$

- Hidden

$$
\begin{equation*}
h_{2}=o_{2} \circ \tanh \left(c_{2}\right) \tag{55}
\end{equation*}
$$

Forwards at time step 2

c_{1}

$[0.8,0.0]^{\top}$

- Message

$$
\begin{align*}
c_{2} & =f_{2} \circ c_{1}+i_{2} \circ \tilde{c_{2}} \tag{51}\\
& =[-0.8,1.0]^{\top} \tag{52}
\end{align*}
$$

- Hidden

$$
\begin{align*}
h_{2} & =o_{2} \circ \tanh \left(c_{2}\right) \tag{54}\\
& =[1.0,1.0]^{\top} \circ \tanh \left([-0.8,1.0]^{\top}\right) \tag{55}
\end{align*}
$$

Forwards at time step 2

c_{1}

$[0.8,0.0]^{\top}$

- Message

$$
\begin{align*}
c_{2} & =f_{2} \circ c_{1}+i_{2} \circ \tilde{c_{2}} \tag{51}\\
& =[-0.8,1.0]^{\top} \tag{52}
\end{align*}
$$

- Hidden

$$
\begin{align*}
h_{2} & =o_{2} \circ \tanh \left(c_{2}\right) \tag{54}\\
& =[1.0,1.0]^{\top} \circ \tanh \left([-0.8,1.0]^{\top}\right) \tag{55}\\
& =[-0.7,0.8]^{\top} \tag{56}
\end{align*}
$$

Forwards at time step 2

c_{1}

$[0.8,0.0]^{\top}$

- Message

$$
\begin{align*}
c_{2} & =f_{2} \circ c_{1}+i_{2} \circ \tilde{c_{2}} \tag{51}\\
& =[-0.8,1.0]^{\top} \tag{52}
\end{align*}
$$

- Hidden

$$
\begin{align*}
h_{2} & =o_{2} \circ \tanh \left(c_{2}\right) \tag{54}\\
& =[-0.7,0.8]^{\top} \tag{55}
\end{align*}
$$

- Output target ${ }_{2}=[0.0,1.0]^{\top}$

Next time step ...

- $i_{3}=[0.4,0.0]^{\top}$
- $f_{3}=[0.4,0.6]^{\top}$
- $o_{3}=[0.5,0.5]^{\top}$
- $\tilde{c_{3}}=[-1.0,-0.6]^{\top}$
- $c_{3}=[-0.7,0.6]^{\top}$
- $h_{3}=[-0.3,0.3]^{\top}$
- Classify target ${ }_{3}=[0.0,1.0]^{\top}$

What's going on?

- What's the classification?
- What inputs are important?
- When can things be forgotten?
- How would other sequences be classified?

Training

- The parameters of LSTM showed in this example are obtained by training with cross-entropy loss function: ($\mathrm{T}=3$)

$$
\sum_{i=1}^{N} \sum_{t=1}^{T} H\left(y_{i t}, \text { target }_{i t}\right)
$$

- 0 : accumulated number of A at time t is no larger than 1
- 1: accumulated number of A at time t is larger than 1
- Converted to binary classification problem:

$$
\operatorname{target}_{1}=[1.0,0.0] \quad \operatorname{target}_{2}=[0.0,1.0] \quad \text { target }_{3}=[0.0,1.0]
$$

