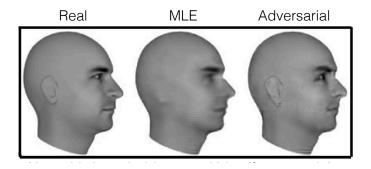


GANs

Machine Learning: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM GRAHAM NEUBIG

Generative Models Ain't Perfect



(Lotter et al. 2015)

- Fitting conventional prob models focuses on common input
- Can be "fuzzy"
- Still better for smaller ammounts of data or if true objective is ML

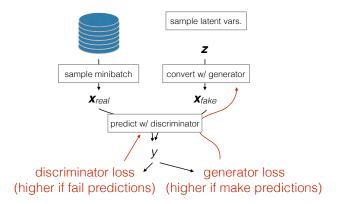
• It's time for some game theory

- It's time for some game theory
- Create "discriminator" that criticizes generated output
 - Is this example real or not
- Generator is trained to fool discriminator to say it's real

- It's time for some game theory
- Create "discriminator" that criticizes generated output
 - Is this example real or not
- Generator is trained to fool discriminator to say it's real
- Contrast with encoder / decoder:

- It's time for some game theory
- Create "discriminator" that criticizes generated output
 - Is this example real or not
- Generator is trained to fool discriminator to say it's real
- Contrast with encoder / decoder: no fixed representation

Training GAN



Discriminator

$$\ell_D(\theta_D, \theta_G) = \\ -\mathbb{E}_{x \sim P_{\text{data}}} [\log D(x)] \\ -\mathbb{E}_z [\log(1 - D(G(z)))]$$

- Real data should get high score
- Fake data should get low score

Discriminator

$$\ell_D(\theta_D, \theta_G) = \\ -\mathbb{E}_{x \sim P_{\text{data}}} [\log D(x)] \\ -\mathbb{E}_z [\log(1 - D(G(z)))]$$

- Real data should get high score
- Fake data should get low score

Discriminator

$$\ell_D(\theta_D, \theta_G) = \\ -\mathbb{E}_{x \sim P_{\text{data}}} [\log D(x)] \\ -\mathbb{E}_z [\log(1 - D(G(z)))]$$

- Real data should get high score
- Fake data should get low score

Discriminator

$$\begin{split} \ell_D(\theta_D, \theta_G) &= \\ -\mathbb{E}_{x \sim P_{\text{data}}} \left[\log D(x) \right] \\ -\mathbb{E}_z \left[\log(1 - D(G(z))) \right] \end{split}$$

- Real data should get high score
- Fake data should get low score

Generator

$$\ell_G(\theta_D, \theta_G) = -\ell_D(\theta_D, \theta_G)$$

- If discriminator is very accurate, sometimes better to focus on non-saturating loss
- Focus on where you can confuse discriminator

$$\mathbb{E}_{z}\left[-\log D(G(z))\right] \qquad (1)$$

Problems with Training

- GANs are great, but training very hard
- Mode Collapse: generator maps all z to single x
- Over-confident discriminator

Problems with Training

- GANs are great, but training very hard
- Mode Collapse: generator maps all z to single x (other examples as side information)
- Over-confident discriminator

Problems with Training

- GANs are great, but training very hard
- Mode Collapse: generator maps all z to single x (other examples as side information)
- Over-confident discriminator (smoothing)

Problems with Discrete Data

