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Theme for Today

� Representation

� Generation

� Training

Machine Learning: Jordan Boyd-Graber | UMD Autoencoders | 2 / 5



Theme for Today

� Representation

� Generation p(x ,y)

� Training

Ties in to the generative models and inference we’ve been talking about!
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Theme for Today

� Representation

� Generation

� Training

But with weaker probabilstic assumptions . . . okay if you have enough data.
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Why autoencoders

� Discover hidden structure
� Unlike clustering or admixtures, continuous
� Not always interpretable

� Reconstruct data

� Features for downstream model (a la word2vec)
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Setup: Encoders and Decoders

� Minimize L(~x ,g(f (~x)))
� Encoder f
� Decoder g

� Problem: avoid identity!
� Via hidden layer ~h
� Regularized
� Smaller dimensionality
� Probabilistic
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Setup: Encoders and Decoders

� Minimize L(~x ,g(f (~x)))
� Encoder f
� Decoder g

� Problem: avoid identity!
� Via hidden layer ~h
� Regularized
� Smaller dimensionality
� Probabilistic

(Goodfellow 2016)

Stochastic Autoencoders

CHAPTER 14. AUTOENCODERS

Typically, the output variables are treated as being conditionally independent
given h so that this probability distribution is inexpensive to evaluate, but some
techniques such as mixture density outputs allow tractable modeling of outputs
with correlations.
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Figure 14.2: The structure of a stochastic autoencoder, in which both the encoder and the
decoder are not simple functions but instead involve some noise injection, meaning that
their output can be seen as sampled from a distribution, pencoder(h | x) for the encoder
and pdecoder(x | h) for the decoder.

To make a more radical departure from the feedforward networks we have seen
previously, we can also generalize the notion of an encoding function f(x) to
an encoding distribution pencoder(h | x), as illustrated in figure 14.2.

Any latent variable model pmodel(h, x) defines a stochastic encoder

pencoder(h | x) = pmodel(h | x) (14.12)

and a stochastic decoder

pdecoder(x | h) = pmodel(x | h). (14.13)

In general, the encoder and decoder distributions are not necessarily conditional
distributions compatible with a unique joint distribution pmodel(x, h). Alain et al.
(2015) showed that training the encoder and decoder as a denoising autoencoder
will tend to make them compatible asymptotically (with enough capacity and
examples).

14.5 Denoising Autoencoders

The denoising autoencoder (DAE) is an autoencoder that receives a corrupted
data point as input and is trained to predict the original, uncorrupted data point
as its output.

The DAE training procedure is illustrated in figure 14.3. We introduce a
corruption process C(x̃ | x) which represents a conditional distribution over
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Figure 14.2
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Denoising Autoencoders

(Goodfellow 2016)

Denoising AutoencoderCHAPTER 14. AUTOENCODERS
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Figure 14.3: The computational graph of the cost function for a denoising autoencoder,
which is trained to reconstruct the clean data point x from its corrupted version x̃.
This is accomplished by minimizing the loss L = � log pdecoder(x | h = f(x̃)), where
x̃ is a corrupted version of the data example x, obtained through a given corruption
process C(x̃ | x). Typically the distribution pdecoder is a factorial distribution whose mean
parameters are emitted by a feedforward network g.

corrupted samples x̃, given a data sample x. The autoencoder then learns a
reconstruction distribution preconstruct(x | x̃) estimated from training pairs
(x, x̃), as follows:

1. Sample a training example x from the training data.

2. Sample a corrupted version x̃ from C(x̃ | x = x).

3. Use (x, x̃) as a training example for estimating the autoencoder reconstruction
distribution preconstruct(x | x̃) = pdecoder(x | h) with h the output of encoder
f(x̃) and pdecoder typically defined by a decoder g(h).

Typically we can simply perform gradient-based approximate minimization (such
as minibatch gradient descent) on the negative log-likelihood � log pdecoder(x | h).
So long as the encoder is deterministic, the denoising autoencoder is a feedforward
network and may be trained with exactly the same techniques as any other
feedforward network.

We can therefore view the DAE as performing stochastic gradient descent on
the following expectation:

� Ex⇠p̂data(x)Ex̃⇠C(x̃|x) log pdecoder(x | h = f(x̃)) (14.14)

where p̂data(x) is the training distribution.
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Figure 14.3

C: corruption process 
(introduce noise)
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Figure 14.3: The computational graph of the cost function for a denoising autoencoder,
which is trained to reconstruct the clean data point x from its corrupted version x̃.
This is accomplished by minimizing the loss L = � log pdecoder(x | h = f(x̃)), where
x̃ is a corrupted version of the data example x, obtained through a given corruption
process C(x̃ | x). Typically the distribution pdecoder is a factorial distribution whose mean
parameters are emitted by a feedforward network g.

corrupted samples x̃, given a data sample x. The autoencoder then learns a
reconstruction distribution preconstruct(x | x̃) estimated from training pairs
(x, x̃), as follows:

1. Sample a training example x from the training data.

2. Sample a corrupted version x̃ from C(x̃ | x = x).

3. Use (x, x̃) as a training example for estimating the autoencoder reconstruction
distribution preconstruct(x | x̃) = pdecoder(x | h) with h the output of encoder
f(x̃) and pdecoder typically defined by a decoder g(h).

Typically we can simply perform gradient-based approximate minimization (such
as minibatch gradient descent) on the negative log-likelihood � log pdecoder(x | h).
So long as the encoder is deterministic, the denoising autoencoder is a feedforward
network and may be trained with exactly the same techniques as any other
feedforward network.

We can therefore view the DAE as performing stochastic gradient descent on
the following expectation:
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� Perturb the input somehow

� Try to correct the noise: high probability of ~x !

� Learns manifold
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Denoising Autoencoders

(Goodfellow 2016)

Denoising Autoencoders Learn 
a Manifold

CHAPTER 14. AUTOENCODERS
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Figure 14.4: A denoising autoencoder is trained to map a corrupted data point x̃ back to
the original data point x. We illustrate training examples x as red crosses lying near a
low-dimensional manifold illustrated with the bold black line. We illustrate the corruption
process C(x̃ | x) with a gray circle of equiprobable corruptions. A gray arrow demonstrates
how one training example is transformed into one sample from this corruption process.
When the denoising autoencoder is trained to minimize the average of squared errors
||g(f(x̃))�x||2, the reconstruction g(f(x̃)) estimates Ex,x̃⇠pdata(x)C(x̃|x)[x | x̃]. The vector
g(f(x̃))� x̃ points approximately towards the nearest point on the manifold, since g(f(x̃))
estimates the center of mass of the clean points x which could have given rise to x̃. The
autoencoder thus learns a vector field g(f(x))� x indicated by the green arrows. This
vector field estimates the score rx log pdata(x) up to a multiplicative factor that is the
average root mean square reconstruction error.
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Figure 14.4
� Perturb the input somehow
� Try to correct the noise: high probability of ~x !
� Learns manifold
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