Variational Inference

Material adapted from David Blei University of Maryland
INTRODUCTION

Variational Inference

- Inferring hidden variables
- Unlike MCMC:
- Deterministic
- Easy to gauge convergence
- Requires dozens of iterations
- Doesn't require conjugacy
- Slightly hairier math

Setup

- $\vec{x}=x_{1: n}$ observations
- $\vec{z}=z_{1: m}$ hidden variables
- α fixed parameters
- Want the posterior distribution

$$
\begin{equation*}
p(z \mid x, \alpha)=\frac{p(z, x \mid \alpha)}{\int_{z} p(z, x \mid \alpha)} \tag{1}
\end{equation*}
$$

Motivation

- Can't compute posterior for many interesting models

GMM (finite)

1. Draw $\mu_{k} \sim \mathscr{N}\left(0, \tau^{2}\right)$
2. For each observation $i=1 \ldots n$:
2.1 Draw $z_{i} \sim \operatorname{Mult}(\pi)$
2.2 Draw $x_{i} \sim \mathcal{N}\left(\mu_{z_{i}}, \sigma_{0}^{2}\right)$

- Posterior is intractable for large n, and we might want to add priors

$$
\begin{equation*}
p\left(\mu_{1: K}, z_{1: n} \mid x_{1: n}\right)=\frac{\prod_{k=1}^{K} p\left(\mu_{k}\right) \prod_{i=1}^{n} p\left(z_{i}\right) p\left(x_{i} \mid z_{i}, \mu_{1: K}\right)}{\int_{\mu_{1: K}} \sum_{z_{1: n}} \prod_{k=1}^{K} p\left(\mu_{k}\right) \prod_{i=1}^{n} p\left(z_{i}\right) p\left(x_{i} \mid z_{i}, \mu_{1: K}\right)} \tag{2}
\end{equation*}
$$

Motivation

- Can't compute posterior for many interesting models

GMM (finite)

1. Draw $\mu_{k} \sim \mathscr{N}\left(0, \tau^{2}\right)$
2. For each observation $i=1 \ldots n$:
2.1 Draw $z_{i} \sim \operatorname{Mult}(\pi)$
2.2 Draw $x_{i} \sim \mathscr{N}\left(\mu_{z_{i}}, \sigma_{0}^{2}\right)$

- Posterior is intractable for large n, and we might want to add priors

$$
\begin{equation*}
p\left(\mu_{1: K}, z_{1: n} \mid x_{1: n}\right)=\frac{\prod_{k=1}^{K} p\left(\mu_{k}\right) \prod_{i=1}^{n} p\left(z_{i}\right) p\left(x_{i} \mid z_{i}, \mu_{1: K}\right)}{\int_{\mu_{1: K}} \sum_{z_{1: n}} \prod_{k=1}^{K} p\left(\mu_{k}\right) \prod_{i=1}^{n} p\left(z_{i}\right) p\left(x_{i} \mid z_{i}, \mu_{1: K}\right)} \tag{2}
\end{equation*}
$$

Consider all means

Motivation

- Can't compute posterior for many interesting models

GMM (finite)

1. Draw $\mu_{k} \sim \mathscr{N}\left(0, \tau^{2}\right)$
2. For each observation $i=1 \ldots n$:
2.1 Draw $z_{i} \sim \operatorname{Mult}(\pi)$
2.2 Draw $x_{i} \sim \mathscr{N}\left(\mu_{z_{i}}, \sigma_{0}^{2}\right)$

- Posterior is intractable for large n, and we might want to add priors

$$
\begin{equation*}
p\left(\mu_{1: K}, z_{1: n} \mid x_{1: n}\right)=\frac{\prod_{k=1}^{K} p\left(\mu_{k}\right) \prod_{i=1}^{n} p\left(z_{i}\right) p\left(x_{i} \mid z_{i}, \mu_{1: K}\right)}{\int_{\mu_{1: K}} \sum_{z_{1: n}} \prod_{k=1}^{K} p\left(\mu_{k}\right) \prod_{i=1}^{n} p\left(z_{i}\right) p\left(x_{i} \mid z_{i}, \mu_{1: K}\right)} \tag{2}
\end{equation*}
$$

Consider all assignments

Main Idea

- We create a variational distribution over the latent variables

$$
\begin{equation*}
q\left(z_{1: m} \mid v\right) \tag{3}
\end{equation*}
$$

- Find the settings of v so that q is close to the posterior
- If $q==p$, then this is vanilla EM

What does it mean for distributions to be close?

- We measure the closeness of distributions using Kullback-Leibler Divergence

$$
\begin{equation*}
\mathrm{KL}(q \| p) \equiv \mathbb{E}_{q}\left[\log \frac{q(Z)}{p(Z \mid x)}\right] \tag{4}
\end{equation*}
$$

What does it mean for distributions to be close?

- We measure the closeness of distributions using Kullback-Leibler Divergence

$$
\begin{equation*}
\mathrm{KL}(q \| p) \equiv \mathbb{E}_{q}\left[\log \frac{q(Z)}{p(Z \mid x)}\right] \tag{4}
\end{equation*}
$$

- Characterizing KL divergence
- If q and p are high, we're happy
- If q is high but p isn't, we pay a price
- If q is low, we don't care
- If $\mathrm{KL}=0$, then distribution are equal

What does it mean for distributions to be close?

- We measure the closeness of distributions using Kullback-Leibler Divergence

$$
\begin{equation*}
\mathrm{KL}(q \| p) \equiv \mathbb{E}_{q}\left[\log \frac{q(Z)}{p(Z \mid x)}\right] \tag{4}
\end{equation*}
$$

- Characterizing KL divergence
- If q and p are high, we're happy
- If q is high but p isn't, we pay a price
- If q is low, we don't care
- If $\mathrm{KL}=0$, then distribution are equal

This behavior is often called "mode splitting": we want a good solution, not every solution.

Jensen's Inequality: Concave Functions and Expectations

If you haven't seen this before, spend fifteen minutes to convince yourself that it's true

Evidence Lower Bound (ELBO)

- Apply Jensen's inequality on log probability of data

$$
\log p(x)=\log \left[\int_{z} p(x, z)\right]
$$

Evidence Lower Bound (ELBO)

- Apply Jensen’s inequality on log probability of data

$$
\begin{aligned}
\log p(x) & =\log \left[\int_{z} p(x, z)\right] \\
& =\log \left[\int_{z} p(x, z) \frac{q(z)}{q(z)}\right]
\end{aligned}
$$

Add a term that is equal to one

Evidence Lower Bound (ELBO)

- Apply Jensen's inequality on log probability of data

$$
\begin{aligned}
\log p(x) & =\log \left[\int_{z} p(x, z)\right] \\
& =\log \left[\int_{z} p(x, z) \frac{q(z)}{q(z)}\right] \\
& =\log \left[\mathbb{E}_{q}\left[\frac{p(x, z)}{q(z)}\right]\right]
\end{aligned}
$$

Take the numerator to create an expectation

Evidence Lower Bound (ELBO)

- Apply Jensen’s inequality on log probability of data

$$
\begin{aligned}
\log p(x) & =\log \left[\int_{z} p(x, z)\right] \\
& =\log \left[\int_{z} p(x, z) \frac{q(z)}{q(z)}\right] \\
& =\log \left[\mathbb{E}_{q}\left[\frac{p(x, z)}{q(z)}\right]\right] \\
& \geq \mathbb{E}_{q}[\log p(x, z)]-\mathbb{E}_{q}[\log q(z)]
\end{aligned}
$$

Apply Jensen's equality and use log difference

Evidence Lower Bound (ELBO)

- Apply Jensen’s inequality on log probability of data

$$
\begin{aligned}
\log p(x) & =\log \left[\int_{z} p(x, z)\right] \\
& =\log \left[\int_{z} p(x, z) \frac{q(z)}{q(z)}\right] \\
& =\log \left[\mathbb{E}_{q}\left[\frac{p(x, z)}{q(z)}\right]\right] \\
& \geq \mathbb{E}_{q}[\log p(x, z)]-\mathbb{E}_{q}[\log q(z)]
\end{aligned}
$$

- Fun side effect: Entropy
- Maximizing the ELBO gives as tight a bound on on log probability

Evidence Lower Bound (ELBO)

- Apply Jensen’s inequality on log probability of data

$$
\begin{aligned}
\log p(x) & =\log \left[\int_{z} p(x, z)\right] \\
& =\log \left[\int_{z} p(x, z) \frac{q(z)}{q(z)}\right] \\
& =\log \left[\mathbb{E}_{q}\left[\frac{p(x, z)}{q(z)}\right]\right] \\
& \geq \mathbb{E}_{q}[\log p(x, z)]-\mathbb{E}_{q}[\log q(z)]
\end{aligned}
$$

- Fun side effect: Entropy
- Maximizing the ELBO gives as tight a bound on on log probability

Evidence Lower Bound (ELBO)

- Apply Jensen’s inequality on log probability of data

$$
\begin{aligned}
\log p(x) & =\log \left[\int_{z} p(x, z)\right] \\
& =\log \left[\int_{z} p(x, z) \frac{q(z)}{q(z)}\right] \\
& =\log \left[\mathbb{E}_{q}\left[\frac{p(x, z)}{q(z)}\right]\right] \\
& \geq \mathbb{E}_{q}[\log p(x, z)]-\mathbb{E}_{q}[\log q(z)]
\end{aligned}
$$

- Fun side effect: Entropy
- Maximizing the ELBO gives as tight a bound on on log probability

Relation to KL Divergence

- Conditional probability definition

$$
\begin{equation*}
p(z \mid x)=\frac{p(z, x)}{p(x)} \tag{5}
\end{equation*}
$$

Relation to KL Divergence

- Conditional probability definition

$$
\begin{equation*}
p(z \mid x)=\frac{p(z, x)}{p(x)} \tag{5}
\end{equation*}
$$

- Plug into KL divergence

$$
\mathrm{KL}(q(z) \| p(z \mid x))=\mathbb{E}_{q}\left[\log \frac{q(z)}{p(z \mid x)}\right]
$$

Relation to KL Divergence

- Conditional probability definition

$$
\begin{equation*}
p(z \mid x)=\frac{p(z, x)}{p(x)} \tag{5}
\end{equation*}
$$

- Plug into KL divergence

$$
\begin{aligned}
\mathrm{KL}(q(z) \| p(z \mid x)) & =\mathbb{E}_{q}\left[\log \frac{q(z)}{p(z \mid x)}\right] \\
& =\mathbb{E}_{q}[\log q(z)]-\mathbb{E}_{q}[\log p(z \mid x)]
\end{aligned}
$$

Break quotient into difference

Relation to KL Divergence

- Conditional probability definition

$$
\begin{equation*}
p(z \mid x)=\frac{p(z, x)}{p(x)} \tag{5}
\end{equation*}
$$

- Plug into KL divergence

$$
\begin{aligned}
\mathrm{KL}(q(z) \| p(z \mid x)) & =\mathbb{E}_{q}\left[\log \frac{q(z)}{p(z \mid x)}\right] \\
& =\mathbb{E}_{q}[\log q(z)]-\mathbb{E}_{q}[\log p(z \mid x)] \\
& =\mathbb{E}_{q}[\log q(z)]-\mathbb{E}_{q}[\log p(z, x)]+\log p(x)
\end{aligned}
$$

Apply definition of conditional probability

Relation to KL Divergence

- Conditional probability definition

$$
\begin{equation*}
p(z \mid x)=\frac{p(z, x)}{p(x)} \tag{5}
\end{equation*}
$$

- Plug into KL divergence

$$
\begin{aligned}
\mathrm{KL}(q(z) \| p(z \mid x)) & =\mathbb{E}_{q}\left[\log \frac{q(z)}{p(z \mid x)}\right] \\
& =\mathbb{E}_{q}[\log q(z)]-\mathbb{E}_{q}[\log p(z \mid x)] \\
& =\mathbb{E}_{q}[\log q(z)]-\mathbb{E}_{q}[\log p(z, x)]+\log p(x) \\
& =-\left(\mathbb{E}_{q}[\log p(z, x)]-\mathbb{E}_{q}[\log q(z)]\right)+\log p(x)
\end{aligned}
$$

Reorganize terms

Relation to KL Divergence

- Conditional probability definition

$$
\begin{equation*}
p(z \mid x)=\frac{p(z, x)}{p(x)} \tag{5}
\end{equation*}
$$

- Plug into KL divergence

$$
\begin{aligned}
\mathrm{KL}(q(z) \| p(z \mid x)) & =\mathbb{E}_{q}\left[\log \frac{q(z)}{p(z \mid x)}\right] \\
& =\mathbb{E}_{q}[\log q(z)]-\mathbb{E}_{q}[\log p(z \mid x)] \\
& =\mathbb{E}_{q}[\log q(z)]-\mathbb{E}_{q}[\log p(z, x)]+\log p(x) \\
& =-\left(\mathbb{E}_{q}[\log p(z, x)]-\mathbb{E}_{q}[\log q(z)]\right)+\log p(x)
\end{aligned}
$$

- Negative of ELBO (plus constant); minimizing KL divergence is the same as maximizing ELBO

Mean field variational inference

- Assume that your variational distribution factorizes

$$
\begin{equation*}
q\left(z_{1}, \ldots, z_{m}\right)=\prod_{j=1}^{m} q\left(z_{j}\right) \tag{6}
\end{equation*}
$$

- You may want to group some hidden variables together
- Does not contain the true posterior because hidden variables are dependent

General Blueprint

- Choose q
- Derive ELBO
- Coordinate ascent of each q_{i}
- Repeat until convergence

Example: Latent Dirichlet Allocation

TOPIC 1
 computer, technology, system, service, site, phone, internet, machine

TOPIC 2
TOPIC 3

play, film, movie, theater, production, star, director, stage

Example: Latent Dirichlet Allocation

Example: Latent Dirichlet Allocation

LDA Generative Model

- For each topic $k \in\{1, \ldots, K\}$, a multinomial distribution β_{k}

LDA Generative Model

- For each topic $k \in\{1, \ldots, K\}$, a multinomial distribution β_{k}
- For each document $d \in\{1, \ldots, M\}$, draw a multinomial distribution θ_{d} from a Dirichlet distribution with parameter α

LDA Generative Model

- For each topic $k \in\{1, \ldots, K\}$, a multinomial distribution β_{k}
- For each document $d \in\{1, \ldots, M\}$, draw a multinomial distribution θ_{d} from a Dirichlet distribution with parameter α
- For each word position $n \in\{1, \ldots, N\}$, select a hidden topic z_{n} from the multinomial distribution parameterized by θ.

- For each topic $k \in\{1, \ldots, K\}$, a multinomial distribution β_{k}
- For each document $d \in\{1, \ldots, M\}$, draw a multinomial distribution θ_{d} from a Dirichlet distribution with parameter α
- For each word position $n \in\{1, \ldots, N\}$, select a hidden topic z_{n} from the multinomial distribution parameterized by θ.
- Choose the observed word w_{n} from the distribution $\beta_{z_{n}}$.

LDA Generative Model

- For each topic $k \in\{1, \ldots, K\}$, a multinomial distribution β_{k}
- For each document $d \in\{1, \ldots, M\}$, draw a multinomial distribution θ_{d} from a Dirichlet distribution with parameter α
- For each word position $n \in\{1, \ldots, N\}$, select a hidden topic z_{n} from the multinomial distribution parameterized by θ.
- Choose the observed word w_{n} from the distribution $\beta_{z_{n}}$.

Deriving Variational Inference for LDA

Joint distribution:

$$
\begin{equation*}
p(\theta, z, w \mid \alpha, \beta)=\prod_{d} p\left(\theta_{d} \mid \alpha\right) \prod_{n} p\left(z_{d, n} \mid \theta_{d}\right) p\left(w_{d, n} \mid \beta, z_{d, n}\right) \tag{7}
\end{equation*}
$$

Deriving Variational Inference for LDA

Joint distribution:

$$
\begin{equation*}
p(\theta, z, w \mid \alpha, \beta)=\prod_{d} p\left(\theta_{d} \mid \alpha\right) \prod_{n} p\left(z_{d, n} \mid \theta_{d}\right) p\left(w_{d, n} \mid \beta, z_{d, n}\right) \tag{7}
\end{equation*}
$$

- $p\left(\theta_{d} \mid \alpha\right)=\frac{\Gamma\left(\sum_{i} \alpha_{j}\right)}{\prod_{i} \Gamma\left(\alpha_{i}\right)} \prod_{k} \theta_{d, k}^{\alpha_{k}-1}$ (Dirichlet)

Deriving Variational Inference for LDA

Joint distribution:

$$
\begin{equation*}
p(\theta, z, w \mid \alpha, \beta)=\prod_{d} p\left(\theta_{d} \mid \alpha\right) \prod_{n} p\left(z_{d, n} \mid \theta_{d}\right) p\left(w_{d, n} \mid \beta, z_{d, n}\right) \tag{7}
\end{equation*}
$$

- $p\left(\theta_{d} \mid \alpha\right)=\frac{\Gamma\left(\sum_{i} \alpha_{i}\right)}{\prod_{i} \Gamma\left(\alpha_{i}\right)} \prod_{k} \theta_{d, k}^{\alpha_{k}-1}$ (Dirichlet)
- $p\left(z_{d, n} \mid \theta_{d}\right)=\theta_{d, z_{d, n}}$ (Draw from Multinomial)

Deriving Variational Inference for LDA

Joint distribution:

$$
\begin{equation*}
p(\theta, z, w \mid \alpha, \beta)=\prod_{d} p\left(\theta_{d} \mid \alpha\right) \prod_{n} p\left(z_{d, n} \mid \theta_{d}\right) p\left(w_{d, n} \mid \beta, z_{d, n}\right) \tag{7}
\end{equation*}
$$

- $p\left(\theta_{d} \mid \alpha\right)=\frac{\Gamma\left(\sum_{i} \alpha_{i}\right)}{\prod_{i} \Gamma\left(\alpha_{i}\right)} \prod_{k} \theta_{d, k}^{\alpha_{k}-1}$ (Dirichlet)
- $p\left(z_{d, n} \mid \theta_{d}\right)=\theta_{d, z_{d, n}}$ (Draw from Multinomial)
- $p\left(w_{d, n} \mid \beta, z_{d, n}\right)=\beta_{z_{d, n}, w_{d, n}}$ (Draw from Multinomial)

Deriving Variational Inference for LDA

Joint distribution:

$$
\begin{equation*}
p(\theta, z, w \mid \alpha, \beta)=\prod_{d} p\left(\theta_{d} \mid \alpha\right) \prod_{n} p\left(z_{d, n} \mid \theta_{d}\right) p\left(w_{d, n} \mid \beta, z_{d, n}\right) \tag{7}
\end{equation*}
$$

Variational distribution:

$$
\begin{equation*}
q(\theta, z)=q(\theta \mid \gamma) q(z \mid \phi) \tag{8}
\end{equation*}
$$

Deriving Variational Inference for LDA

Joint distribution:

$$
\begin{equation*}
p(\theta, z, w \mid \alpha, \beta)=\prod_{d} p\left(\theta_{d} \mid \alpha\right) \prod_{n} p\left(z_{d, n} \mid \theta_{d}\right) p\left(w_{d, n} \mid \beta, z_{d, n}\right) \tag{7}
\end{equation*}
$$

Variational distribution:

$$
\begin{equation*}
q(\theta, z)=q(\theta \mid \gamma) q(z \mid \phi) \tag{8}
\end{equation*}
$$

ELBO:

$$
\begin{align*}
L(\gamma, \phi ; \alpha, \beta)= & \mathbb{E}_{q}[\log p(\theta \mid \alpha)]+\mathbb{E}_{q}[\log p(z \mid \theta)]+\mathbb{E}_{q}[\log p(w \mid z, \beta)] \\
& -\mathbb{E}_{q}[\log q(\theta)]-\mathbb{E}_{q}[\log q(z)] \tag{9}
\end{align*}
$$

What is the variational distribution?

$$
\begin{equation*}
q(\vec{\theta}, \vec{z})=\prod_{d} q\left(\theta_{d} \mid \gamma_{d}\right) \prod_{n} q\left(z_{d, n} \mid \phi_{d, n}\right) \tag{10}
\end{equation*}
$$

- Variational document distribution over topics γ_{d}
- Vector of length K for each document
- Non-negative
- Doesn't sum to 1.0
- Variational token distribution over topic assignments $\phi_{d, n}$
- Vector of length K for every token
- Non-negative, sums to 1.0

Expectation of log Dirichlet

- Most expectations are straightforward to compute
- Dirichlet is harder

$$
\begin{equation*}
\mathbb{E}_{\mathrm{dir}}\left[\log p\left(\theta_{i} \mid \alpha\right)\right]=\Psi\left(\alpha_{i}\right)-\Psi\left(\sum_{j} \alpha_{j}\right) \tag{11}
\end{equation*}
$$

Expectation 1

$$
\begin{equation*}
\mathbb{E}_{q}[\log p(\theta \mid \alpha)]=\mathbb{E}_{q}\left[\log \left\{\frac{\Gamma\left(\sum_{i} \alpha_{i}\right)}{\prod_{i} \Gamma\left(\alpha_{i}\right)} \prod_{i} \theta_{i}^{\alpha_{i}-1}\right\}\right] \tag{12}
\end{equation*}
$$

Expectation 1

$$
\begin{align*}
\mathbb{E}_{q}[\log p(\theta \mid \alpha)] & =\mathbb{E}_{q}\left[\log \left\{\frac{\Gamma\left(\sum_{i} \alpha_{i}\right)}{\prod_{i} \Gamma\left(\alpha_{i}\right)} \prod_{i} \theta_{i}^{\alpha_{i}-1}\right\}\right] \tag{12}\\
& =\mathbb{E}_{q}\left[\log \left\{\frac{\Gamma\left(\sum_{i} \alpha_{i}\right)}{\prod_{i} \Gamma\left(\alpha_{i}\right)}\right\}+\sum_{i} \log \theta_{i}^{\alpha_{i}-1}\right] \tag{13}
\end{align*}
$$

Log of products becomes sum of logs.

Expectation 1

$$
\begin{align*}
\mathbb{E}_{q}[\log p(\theta \mid \alpha)] & =\mathbb{E}_{q}\left[\log \left\{\frac{\Gamma\left(\sum_{i} \alpha_{i}\right)}{\prod_{i} \Gamma\left(\alpha_{i}\right)} \prod_{i} \theta_{i}^{\alpha_{i}-1}\right\}\right] \tag{12}\\
& =\mathbb{E}_{q}\left[\log \left\{\frac{\Gamma\left(\sum_{i} \alpha_{i}\right)}{\prod_{i} \Gamma\left(\alpha_{i}\right)}\right\}+\sum_{i} \log \theta_{i}^{\alpha_{i}-1}\right] \\
& =\log \Gamma\left(\sum_{i} \alpha_{i}\right)-\sum_{i} \log \Gamma\left(\alpha_{i}\right)+\mathbb{E}_{q}\left[\sum_{i}\left(\alpha_{i}-1\right) \log \theta_{i}\right] \tag{13}
\end{align*}
$$

Log of exponent becomes product, expectation of constant is constant

Expectation 1

$$
\begin{align*}
\mathbb{E}_{q}[\log p(\theta \mid \alpha)]= & \mathbb{E}_{q}\left[\log \left\{\frac{\Gamma\left(\sum_{i} \alpha_{i}\right)}{\prod_{i} \Gamma\left(\alpha_{i}\right)} \prod_{i} \theta_{i}^{\alpha_{i}-1}\right\}\right] \tag{12}\\
= & \mathbb{E}_{q}\left[\log \left\{\frac{\Gamma\left(\sum_{i} \alpha_{i}\right)}{\prod_{i} \Gamma\left(\alpha_{i}\right)}\right\}+\sum_{i} \log \theta_{i}^{\alpha_{i}-1}\right] \\
= & \log \Gamma\left(\sum_{i} \alpha_{i}\right)-\sum_{i} \log \Gamma\left(\alpha_{i}\right)+\mathbb{E}_{q}\left[\sum_{i}\left(\alpha_{i}-1\right) \log \theta_{i}\right] \\
= & \log \Gamma\left(\sum_{i} \alpha_{i}\right)-\sum_{i} \log \Gamma\left(\alpha_{i}\right) \\
& +\sum_{i}\left(\alpha_{i}-1\right)\left(\Psi\left(\gamma_{i}\right)-\Psi\left(\sum_{j} \gamma_{j}\right)\right)
\end{align*}
$$

Expectation of log Dirichlet

Expectation 2

$$
\begin{equation*}
\mathbb{E}_{q}[\log p(z \mid \theta)]=\mathbb{E}_{q}\left[\log \prod_{n} \prod_{i} \theta_{i}^{1\left[\left[z_{n}==i\right]\right.}\right] \tag{1}
\end{equation*}
$$

Expectation 2

$$
\begin{align*}
\mathbb{E}_{q}[\log p(z \mid \theta)] & =\mathbb{E}_{q}\left[\log \prod_{n} \theta_{i}^{\mathbb{1}\left[z_{n}==i\right]}\right] \tag{13}\\
& =\mathbb{E}_{q}\left[\sum_{n} \sum_{i} \log \theta_{i}^{\mathbb{1}\left[z_{n}==i\right]}\right] \tag{14}
\end{align*}
$$

Products to sums

Expectation 2

$$
\begin{align*}
\mathbb{E}_{q}[\log p(z \mid \theta)] & =\mathbb{E}_{q}\left[\log \prod_{n} \theta_{i}^{\mathbb{1}\left[z_{n}==i\right]}\right] \tag{13}\\
& =\mathbb{E}_{q}\left[\sum_{n} \sum_{i} \log \theta_{i}^{\mathbb{1}\left[z_{n}==i\right]}\right] \tag{14}\\
& =\sum_{n} \sum_{i} \mathbb{E}_{q}\left[\log \theta_{i}^{\mathbb{1}\left[z_{n}==i\right]}\right] \tag{15}
\end{align*}
$$

Linearity of expectation

Expectation 2

$$
\begin{align*}
\mathbb{E}_{q}[\log p(z \mid \theta)] & =\mathbb{E}_{q}\left[\log \prod_{n} \theta_{i}^{\mathbb{1}\left[z_{n}==i\right]}\right] \tag{13}\\
& =\mathbb{E}_{q}\left[\sum_{n} \sum_{i} \log \theta_{i}^{\mathbb{1}\left[z_{n}==i\right]}\right] \tag{14}\\
& =\sum_{n} \sum_{i} \mathbb{E}_{q}\left[\log \theta_{i}^{\mathbb{1}\left[z_{n}==i\right]}\right] \tag{15}\\
& =\sum_{n} \sum_{i} \phi_{n i} \mathbb{E}_{q}\left[\log \theta_{i}\right] \tag{16}
\end{align*}
$$

Independence of variational distribution, exponents become products

Expectation 2

$$
\begin{align*}
\mathbb{E}_{q}[\log p(z \mid \theta)] & =\mathbb{E}_{q}\left[\log \prod_{n} \prod_{i} \theta_{i}^{\mathbb{1}\left[z_{n}==i\right]}\right] \tag{13}\\
& =\mathbb{E}_{q}\left[\sum_{n} \sum_{i} \log \theta_{i}^{\mathbb{1}\left[z_{n}==i\right]}\right] \tag{14}\\
& =\sum_{n} \sum_{i} \mathbb{E}_{q}\left[\log \theta_{i}^{\mathbb{1}\left[z_{n}==i\right]}\right] \tag{15}\\
& =\sum_{n} \sum_{i} \phi_{n i} \mathbb{E}_{q}\left[\log \theta_{i}\right] \tag{16}\\
& =\sum_{n} \sum_{i} \phi_{n i}\left(\Psi\left(\gamma_{i}\right)-\Psi\left(\sum_{j} \gamma_{j}\right)\right) \tag{17}
\end{align*}
$$

Expectation of log Dirichlet

Expectation 3

$$
\begin{equation*}
\mathbb{E}_{q}[\log p(w \mid z, \beta)]=\mathbb{E}_{q}\left[\log \beta_{z_{d, n}, w_{d, n}}\right] \tag{18}
\end{equation*}
$$(19)

Expectation 3

$$
\begin{align*}
& \mathbb{E}_{q}[\log p(w \mid z, \beta)]=\mathbb{E}_{q}\left[\log \beta_{z_{d, n}, w_{d, n}}\right] \tag{18}\\
& 5 \tag{19}
\end{align*}
$$

Expectation 3

$$
\begin{align*}
\mathbb{E}_{q}[\log p(w \mid z, \beta)] & =\mathbb{E}_{q}\left[\log \beta_{z_{d, n}, w_{d, n}}\right] \tag{18}\\
& =\mathbb{E}_{q}\left[\log \prod_{v} \prod_{i}^{K} \beta_{i, v}^{\mathbb{1}\left[v=w_{d, n}, z_{d, n}=i\right]}\right] \tag{19}\\
& =\sum_{v} \sum_{i}^{K} \mathbb{E}_{q}\left[\mathbb{1}\left[v=w_{d, n}, z_{d, n}=i\right]\right] \log \beta_{i, v} \tag{20}
\end{align*}
$$

Expectation 3

$$
\begin{align*}
\mathbb{E}_{q}[\log p(w \mid z, \beta)] & =\mathbb{E}_{q}\left[\log \beta_{z_{d, n}, w_{d, n}}\right] \tag{18}\\
& =\mathbb{E}_{q}\left[\log \prod_{v}^{v} \prod_{i}^{K} \beta_{i, v} \mathbb{1}\left[v=w_{d, n}, z_{d, n}=i\right]\right. \tag{19}\\
& =\sum_{v}^{v} \sum_{i}^{K} \mathbb{E}_{q}\left[\mathbb{1}\left[v=w_{d, n}, z_{d, n}=i\right]\right] \log \beta_{i, v} \tag{20}\\
& =\sum_{v}^{v} \sum_{i}^{K} \phi_{n, i} w_{d, n}^{v} \log \beta_{i, v} \tag{21}
\end{align*}
$$

Entropies

Entropy of Dirichlet

$$
\begin{aligned}
\mathbb{H}_{q}[\gamma]= & -\log \Gamma\left(\sum_{j} \gamma_{j}\right)+\sum_{i} \log \Gamma\left(\gamma_{i}\right) \\
& -\sum_{i}\left(\gamma_{i}-1\right)\left(\Psi\left(\gamma_{i}\right)-\Psi\left(\sum_{j=1}^{k} \gamma_{j}\right)\right)
\end{aligned}
$$

Entropies

Entropy of Dirichlet

$$
\begin{aligned}
\mathbb{H}_{q}[\gamma]= & -\log \Gamma\left(\sum_{j} \gamma_{j}\right)+\sum_{i} \log \Gamma\left(\gamma_{i}\right) \\
& -\sum_{i}\left(\gamma_{i}-1\right)\left(\Psi\left(\gamma_{i}\right)-\Psi\left(\sum_{j=1}^{k} \gamma_{j}\right)\right)
\end{aligned}
$$

Entropy of Multinomial

$$
\begin{equation*}
\mathbb{H}_{q}\left[\phi_{d, n}\right]=-\sum_{i} \phi_{d, n, i} \log \phi_{d, n, i} \tag{22}
\end{equation*}
$$

Complete objective function

$$
\begin{aligned}
L(\gamma, \phi ; \alpha, \beta) & =\log \Gamma\left(\sum_{j=1}^{k} \alpha_{j}\right)-\sum_{i=1}^{k} \log \Gamma\left(\alpha_{i}\right)+\sum_{i=1}^{k}\left(\alpha_{i}-1\right)\left(\Psi\left(\gamma_{i}\right)-\Psi\left(\sum_{j=1}^{k} \gamma_{j}\right)\right) \\
& +\sum_{n=1}^{N} \sum_{i=1}^{k} \phi_{n i}\left(\Psi\left(\gamma_{i}\right)-\Psi\left(\sum_{j=1}^{k} \gamma_{j}\right)\right) \\
& +\sum_{n=1}^{N} \sum_{i=1}^{k} \sum_{j=1}^{V} \phi_{n i} w_{n}^{j} \log \beta_{i j} \\
& -\log \Gamma\left(\sum_{j=1}^{k} \gamma_{j}\right)+\sum_{i=1}^{k} \log \Gamma\left(\gamma_{i}\right)-\sum_{i=1}^{k}\left(\gamma_{i}-1\right)\left(\Psi\left(\gamma_{i}\right)-\Psi\left(\sum_{j=1}^{k} \gamma_{j}\right)\right) \\
& -\sum_{n=1}^{N} \sum_{i=1}^{k} \phi_{n i} \log \phi_{n i}
\end{aligned}
$$

Note the entropy terms at the end (negative sign)

Deriving the algorithm

- Compute partial wrt to variable of interest
- Set equal to zero
- Solve for variable

Update for ϕ

Derivative of ELBO:

$$
\begin{equation*}
\frac{\partial \mathscr{L}}{\partial \phi_{n i}}=\Psi\left(\gamma_{i}\right)-\Psi\left(\sum_{j} \gamma_{j}\right)+\log \beta_{i, v}-\log \phi_{n i}-1+\lambda \tag{23}
\end{equation*}
$$

Solution:

$$
\begin{equation*}
\phi_{n i} \propto \beta_{i v} \exp \left(\Psi\left(\gamma_{i}\right)-\Psi\left(\sum_{j} \gamma_{j}\right)\right) \tag{24}
\end{equation*}
$$

Update for γ

Derivative of ELBO:

$$
\begin{aligned}
\frac{\partial \mathscr{L}}{\partial \gamma_{i}}= & \Psi^{\prime}\left(\gamma_{i}\right)\left(\alpha_{i}+\phi_{n, i}-\gamma_{i}\right) \\
& -\Psi^{\prime}\left(\sum_{j} \gamma_{j}\right) \sum_{j}\left(\alpha_{j}+\sum_{n} \phi_{n j}-\gamma_{j}\right)
\end{aligned}
$$

Update for γ

Derivative of ELBO:

$$
\begin{aligned}
\frac{\partial \mathscr{L}}{\partial \gamma_{i}}= & \Psi^{\prime}\left(\gamma_{i}\right)\left(\alpha_{i}+\phi_{n, i}-\gamma_{i}\right) \\
& -\Psi^{\prime}\left(\sum_{j} \gamma_{j}\right) \sum_{j}\left(\alpha_{j}+\sum_{n} \phi_{n j}-\gamma_{j}\right)
\end{aligned}
$$

Update for γ

Derivative of ELBO:

$$
\begin{aligned}
\frac{\partial \mathscr{L}}{\partial \gamma_{i}}= & \Psi^{\prime}\left(\gamma_{i}\right)\left(\alpha_{i}+\phi_{n, i}-\gamma_{i}\right) \\
& -\Psi^{\prime}\left(\sum_{j} \gamma_{j}\right) \sum_{j}\left(\alpha_{j}+\sum_{n} \phi_{n j}-\gamma_{j}\right)
\end{aligned}
$$

Solution:

$$
\begin{equation*}
\gamma_{i}=\alpha_{i}+\sum_{n} \phi_{n i} \tag{25}
\end{equation*}
$$

Update for β

Slightly more complicated (requires Lagrange parameter), but solution is obvious:

$$
\begin{equation*}
\beta_{i j} \propto \sum_{d} \sum_{n} \phi_{d n i} w_{d n}^{j} \tag{26}
\end{equation*}
$$

Overall Algorithm

1. Randomly initialize variational parameters (can't be uniform)
2. For each iteration:
2.1 For each document, update γ and ϕ
2.2 For corpus, update β
2.3 Compute \mathscr{L} for diagnostics
3. Return expectation of variational parameters for solution to latent variables

Relationship with Gibbs Sampling

- Gibbs sampling: sample from the conditional distribution of all other variables
- Variational inference: each factor is set to the exponentiated log of the conditional
- Variational is easier to parallelize, Gibbs faster per step
- Gibbs typically easier to implement

Implementation Tips

- Match derivation exactly at first
- Randomize initialization, but specify seed
- Use simple languages first

Implementation Tips

- Match derivation exactly at first
- Randomize initialization, but specify seed
- Use simple languages first . . . then match implementation

Implementation Tips

- Match derivation exactly at first
- Randomize initialization, but specify seed
- Use simple languages first . . . then match implementation
- Try to match variables with paper
- Write unit tests for each atomic update
- Monitor variational bound (with asserts)

Implementation Tips

- Match derivation exactly at first
- Randomize initialization, but specify seed
- Use simple languages first . . . then match implementation
- Try to match variables with paper
- Write unit tests for each atomic update
- Monitor variational bound (with asserts)
- Write the state (checkpointing and debugging)
- Visualize variational parameters

Implementation Tips

- Match derivation exactly at first
- Randomize initialization, but specify seed
- Use simple languages first . . . then match implementation
- Try to match variables with paper
- Write unit tests for each atomic update
- Monitor variational bound (with asserts)
- Write the state (checkpointing and debugging)
- Visualize variational parameters
- Cache / memoize gamma / digamma functions

Next class

- Example on toy LDA problem
- Current research in variational inference

