

Distributional Semantics

Machine Learning: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM YOAV GOLDBERG AND OMER LEVY

Beyond word2vec

- word2vec is factorizing a word-context matrix.
- The content of this matrix affects the resulting similarities.
- word2vec allows you to specify a window size.
- But what about other types of contexts?
- Example: dependency contexts (Levy and Dagan, ACL 2014)

Bag of Words (BoW) Context

Australian scientist discovers star with telescope

Bag of Words (BoW) Context

Australian scientist discovers star with telescope

Syntactic Dependency Context

Australian scientist discovers star with telescope

Syntactic Dependency Context

Syntactic Dependency Context

Embedding Similarity with Different Contexts

Target Word	Bag of Words (k=5)	Dependencies
	Dumbledore	Sunnydale
	hallows	Collinwood
Hogwarts	half-blood	Calarts
(Harry Potter's school)	Malfoy	Greendale
	Snape	Millfield
Related to Harry Potter		Schools

Embedding Similarity with Different Contexts

Target Word	Bag of Words (k=5)	Dependencies
	nondeterministic	Pauling
	non-deterministic	Hotelling
Turing	computability	Heting
(computer scientist)	deterministic	Lessing
	finite-state	Hamming
Related to computability		Scientists

Embedding Similarity with Different Contexts

Target Word	Bag of Words (k=5)	Dependencies	
	singing	singing	
	dance	rapping	
dancing	dances	breakdancing	
(dance gerund)	dancers	miming	
	tap-dancing	busking	
Related to Gerunds dance			
Online Demo!			

- larger window sizes more topical
- dependency relations more functional

- larger window sizes more topical
- dependency relations more functional
- only noun-adjective relations
- only verb-subject relations

- larger window sizes more topical
- dependency relations more functional
- only noun-adjective relations
- only verb-subject relations
- context: time of the current message
- context: user who wrote the message

- larger window sizes more topical
- dependency relations more functional
- only noun-adjective relations
- only verb-subject relations
- context: time of the current message
- context: user who wrote the message
- . . .
- the sky is the limit

Summary

Distributional Semantics

- Words in similar contexts have similar meanings.
- Represent a word by the contexts it appears in.
- But what is a context?

Neural Models (word2vec)

- Represent each word as dense, low-dimensional vector.
- Same intuitions as in distributional vector-space models.
- Efficient to run, scales well, modest memory requirement.
- Dense vectors are convenient to work with.
- Still helpful to think of the context types.