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Word Representation

� Last time, we saw how valuable hidden layers were for representation

� How can we use it for words, images, etc.?

� How similar is “pasta” to “pizza”

� Computers often use one-hot representations

� Or fragile knowledge bases

� Distributional Hypothesis (Harris, 1954; Firth, 1957)

� Know the word by the company it keeps
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Intuition (from Boroni)

Marco saw a furry little wampimuk hiding in the tree
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Representation
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Usefulness

� Multimodal

� Multilingual

� Useful downstream feature
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From Distributional to Distributed Semantics

The new kid on the block

� Deep learning / neural networks
� “Distributed” word representations
� Feed text into neural-net. Get back “word embeddings”.
� Each word is represented as a low-dimensional vector.
� Vectors capture “semantics”

� word2vec (Mikolov et al)
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