Structure and Predictions

Machine Learning: Jordan Boyd-Graber University of Maryland
PERCEPTRON: SLIDES ADAPTED FROM LIANG HUANG

How do we set the feature weights?

- Goal is to minimize errors
- Want to reward features that lead to right answers
- Penalize features that lead to wrong answers
- Problem: predictions are correlated

Perceptron Algorithm

- Rather than just counting up how often we see events?
- We'll use this for intuition in 2D case

Perceptron Algorithm

```
1: \(\vec{w}_{1} \leftarrow \overrightarrow{0}\)
2: for \(t \leftarrow 1 \ldots T\) do
3: Receive \(x_{t}\)
4: \(\quad \hat{y}_{t} \leftarrow \operatorname{sgn}\left(\vec{w}_{t} \cdot \vec{x}_{t}\right)\)
5: Receive \(y_{t}\)
6: if \(\hat{y}_{t} \neq y_{t}\) then
7: \(\quad \vec{w}_{t+1} \leftarrow \vec{w}_{t}+y_{t} \vec{x}_{t}\)
8: else
9: \(\quad \vec{w}_{t+1} \leftarrow w_{t}\)
    return \(w_{T+1}\)
```


Binary to Structure

binary perceptron (Rosenblatt, 1959)

Binary to Structure

multiclass perceptron (Freund/Schapire, 1999)

Binary to Structure

structured perceptron
(Collins, 2002)

Generic Perceptron

- perceptron is the simplest machine learning algorithm
- online-learning: one example at a time
- learning by doing
- find the best output under the current weights
- update weights at mistakes

2D Example

Initially, weight vector is zero:

$$
\begin{equation*}
\vec{w}_{1}=\langle 0,0\rangle \tag{1}
\end{equation*}
$$

Observation 1

$$
\begin{align*}
& x_{1}=\langle-2,2\rangle \tag{2}\\
& \hat{y}_{1}=0 \tag{3}\\
& y_{1}=+1 \tag{4}
\end{align*}
$$

Update 1

$$
\begin{align*}
& \vec{w}_{t+1} \leftarrow \vec{w}_{t}+y_{t} \vec{x}_{t} \tag{5}\\
& \vec{w}_{2} \leftarrow \tag{6}
\end{align*}
$$

Update 1

$$
\begin{align*}
\vec{w}_{t+1} & \leftarrow \vec{w}_{t}+y_{t} \vec{x}_{t} \tag{5}\\
\vec{w}_{2} & \leftarrow\langle 0,0\rangle+\langle-2,2\rangle \tag{6}
\end{align*}
$$

Update 1

$$
\begin{align*}
\vec{w}_{t+1} & \leftarrow \vec{w}_{t}+y_{t} \vec{x}_{t} \tag{5}\\
\vec{w}_{2} & \leftarrow\langle 0,0\rangle+\langle-2,2\rangle \tag{6}\\
\vec{w}_{2} & =\langle-2,2\rangle \tag{7}
\end{align*}
$$

Observation 2

Observation 2

$$
\begin{align*}
& x_{2}=\langle-2,-3\rangle \tag{8}\\
& \hat{y}_{2}=+4+-6=-2 \tag{9}\\
& y_{2}=-1 \tag{10}
\end{align*}
$$

Update 2

$$
\begin{gather*}
\vec{w}_{t+1} \leftarrow \vec{w}_{t} \tag{11}\\
\vec{w}_{2} \leftarrow \tag{12}
\end{gather*}
$$

Update 2

$$
\begin{align*}
\vec{w}_{t+1} & \leftarrow \vec{w}_{t} \tag{11}\\
\vec{w}_{2} & \leftarrow\langle-2,2\rangle \tag{13}
\end{align*}
$$(12)

Update 2

$$
\begin{align*}
\vec{w}_{t+1} & \leftarrow \vec{w}_{t} \tag{11}\\
\vec{w}_{2} & \leftarrow\langle-2,2\rangle \tag{12}\\
\vec{w}_{2} & =\langle-2,2\rangle \tag{13}
\end{align*}
$$

Observation 3

Observation 3

$$
\begin{align*}
& x_{3}=\langle 2,-1\rangle \tag{14}\\
& \hat{y}_{3}=-4+-2=-6 \tag{15}\\
& y_{3}=+1 \tag{16}
\end{align*}
$$

Update 3

$$
\begin{gather*}
\vec{w}_{t+1} \leftarrow \vec{w}_{t}+y_{t} \vec{x}_{t} \tag{17}\\
\vec{w}_{3} \leftarrow \tag{18}
\end{gather*}
$$

Update 3

$$
\begin{align*}
\vec{w}_{t+1} & \leftarrow \vec{w}_{t}+y_{t} \vec{x}_{t} \tag{17}\\
\vec{w}_{3} & \leftarrow\langle-2,2\rangle+\langle 2,-1\rangle \tag{18}
\end{align*}
$$

Update 3

$$
\begin{align*}
\vec{w}_{t+1} & \leftarrow \vec{w}_{t}+y_{t} \vec{x}_{t} \tag{17}\\
\vec{w}_{3} & \leftarrow\langle-2,2\rangle+\langle 2,-1\rangle \tag{18}\\
\vec{w}_{3} & =\langle 0,1\rangle \tag{19}
\end{align*}
$$

Observation 4

Observation 4

$$
\begin{align*}
& x_{4}=\langle 1,-4\rangle \tag{20}\\
& \hat{y}_{4}=-4 \tag{21}\\
& y_{4}=-1 \tag{22}
\end{align*}
$$

Update 4

$$
\vec{W}_{4} \leftarrow
$$(23)

Update 4

$$
\begin{equation*}
\vec{w}_{4} \leftarrow \vec{w}_{3} \tag{2}
\end{equation*}
$$(24)

Update 4

$$
\begin{align*}
& \vec{w}_{4} \leftarrow \vec{w}_{3} \tag{2}\\
& \vec{w}_{4}=\langle 0,1\rangle \tag{24}
\end{align*}
$$

Observation 5

$$
\begin{align*}
& x_{5}=\langle 2,2\rangle \tag{25}\\
& \hat{y}_{5}=2 \tag{26}\\
& y_{5}=+1 \tag{27}
\end{align*}
$$

Update 5

$$
\vec{w}_{5} \leftarrow
$$(28)

Update 5

$$
\begin{equation*}
\vec{w}_{5} \leftarrow \vec{w}_{4} \tag{28}
\end{equation*}
$$(29)

Update 5

$$
\begin{align*}
& \vec{w}_{5} \leftarrow \vec{w}_{4} \tag{28}\\
& \vec{w}_{5}=\langle 0,1\rangle \tag{29}
\end{align*}
$$

Observation 6

$$
\begin{align*}
& x_{6}=\langle 2,2\rangle \tag{30}\\
& \hat{y}_{6}=2 \tag{31}\\
& y_{6}=+1 \tag{32}
\end{align*}
$$

Update 6

$\vec{w}_{6} \leftarrow$

(33)
Update 6

$$
\begin{equation*}
\vec{w}_{6} \leftarrow \vec{w}_{5} \tag{33}
\end{equation*}
$$(34)

Update 6

$$
\begin{align*}
& \vec{w}_{6} \leftarrow \vec{w}_{5} \tag{3}\\
& \vec{w}_{6}=\langle 0,1\rangle
\end{align*}
$$(34)

Structured Perceptron

Perceptron Algorithm

Inputs:
Initialization:
Define:

Algorithm:

Output:

For $t=1 \ldots T, i=1 \ldots n$
$z_{i}=F\left(x_{i}\right)$
If $\left(z_{i} \neq y_{i}\right) \quad \mathbf{W} \longleftarrow \mathbf{W}+\boldsymbol{\Phi}\left(x_{i}, y_{i}\right)-\boldsymbol{\Phi}\left(x_{i}, z_{i}\right)$
Training set $\left(x_{i}, y_{i}\right)$ for $i=1 \ldots n$
$\mathrm{W}=0$
$F(x)=\operatorname{argmax}_{y \in \operatorname{GEN}(x)} \boldsymbol{\Phi}(x, y) \cdot \mathbf{W}$

Parameters W

POS Example

- gold-standard: DT NN VBD DT NN y

\bullet	the man bit the	dog	x			
\bullet current output: DT	NN	NN	DT	NN	z	
\bullet	the man bit the dog	x	$\Phi(x, z)$			

- assume only two feature classes
- tag bigrams
$t_{i-1} \quad t_{i}$
- word/tag pairs
- weights ++: (NN,VBD) (VBD, DT) (VBD \rightarrow bit)
- weights --: (NN, NN) (NN, DT) (NN \rightarrow bit)

