

Structure and Predictions

Machine Learning: Jordan Boyd-Graber University of Maryland

Today

- Perceptron
- Structured Perceptron

Today

- Perceptron
- Structured Perceptron
 - 1. Good ML analysis, standard NLP problem
 - 2. Uses structure and representation

Logistic Regression

Logistic RegressionSVM $p(y|x) = \sigma(\sum_i \beta_i x_i)$

Logistic Regression	SVM
$p(y x) = \sigma(\sum_i \beta_i x_i)$	$sign(ec{w}\cdot x+b)$

What statistical property do these (and many others share)?

Logistic Regression	SVM
$p(y x) = \sigma(\sum_i \beta_i x_i)$	$sign(ec{w}\cdot x+b)$

- What statistical property do these (and many others share)?
- Hint: $p(y_i, y_j | x_i, x_j) = p(y_i | x_i)p(y_j | x_j)$

Logistic Regression	SVM
$p(y x) = \sigma(\sum_i \beta_i x_i)$	$sign(ec{w}\cdot x+b)$

What statistical property do these (and many others share)?

• Hint:
$$p(y_i, y_j | x_i, x_j) = p(y_i | x_i) p(y_j | x_j)$$

Independent!

Is this how the world works?

Is this how the world works?

Also particularly relevant for 2016: correlated voting patterns

POS Tagging: Task Definition

- Annotate each word in a sentence with a part-of-speech marker.
- Lowest level of syntactic analysis.

John	saw	the	saw	and	decided	to	take	it	to	the	table
NNP	VBD	DT	NN	CC	VBD	TO	VB	PRP	IN	DT	NN

Assume *K* parts of speech, a lexicon size of *V*, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length *K*): π_i
- θ Transition matrix (matrix of size K by K): $\theta_{i,i}$
- β An emission matrix (matrix of size K by V): $\beta_{i,w}$

Assume *K* parts of speech, a lexicon size of *V*, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length *K*): π_i
- $\boldsymbol{\theta}$ Transition matrix (matrix of size K by K): $\theta_{i,i}$
- β An emission matrix (matrix of size K by V): $\beta_{i,w}$

Score

$$f(x,z) \equiv \sum_{i} w_{i}\phi_{i}(x,z)$$
(1)

Assume *K* parts of speech, a lexicon size of *V*, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length *K*): π_i
- θ Transition matrix (matrix of size K by K): $\theta_{i,j}$
- β An emission matrix (matrix of size K by V): $\beta_{i,w}$

Score

$$f(x,z) \equiv \sum_{i} w_{i}\phi_{i}(x,z)$$
(1)

Total score of hypothesis z given input x

Assume *K* parts of speech, a lexicon size of *V*, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length *K*): π_i
- θ Transition matrix (matrix of size K by K): $\theta_{i,j}$
- β An emission matrix (matrix of size K by V): $\beta_{i,w}$

Score

$$f(x,z) \equiv \sum_{i} \mathbf{w}_{i} \phi_{i}(x,z)$$
(1)

Feature weight

Assume *K* parts of speech, a lexicon size of *V*, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length *K*): π_i
- θ Transition matrix (matrix of size K by K): $\theta_{i,j}$
- β An emission matrix (matrix of size K by V): $\beta_{i,w}$

Score

$$f(x,z) \equiv \sum_{i} w_{i} \phi_{i}(x,z)$$
(1)

Feature present (binary)

Assume *K* parts of speech, a lexicon size of *V*, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length *K*): π_i
- θ Transition matrix (matrix of size K by K): $\theta_{i,i}$
- β An emission matrix (matrix of size K by V): $\beta_{i,w}$

Score

$$f(x,z) \equiv \sum_{i} w_{i}\phi_{i}(x,z)$$
(1)

Assume *K* parts of speech, a lexicon size of *V*, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length *K*): π_i
- θ Transition matrix (matrix of size K by K): $\theta_{i,i}$
- β An emission matrix (matrix of size K by V): $\beta_{i,w}$

Score

$$f(x,z) \equiv \sum_{i} w_{i}\phi_{i}(x,z)$$
(1)

Assume *K* parts of speech, a lexicon size of *V*, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length *K*): π_i
- θ Transition matrix (matrix of size K by K): $\theta_{i,i}$
- β An emission matrix (matrix of size K by V): $\beta_{i,w}$

Score

$$f(x,z) \equiv \sum_{i} w_{i}\phi_{i}(x,z)$$
(1)

Assume *K* parts of speech, a lexicon size of *V*, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length *K*): $\pi_i = \log p(z_1 = i)$
- θ Transition matrix (matrix of size K by K): $\theta_{i,i}$
- β An emission matrix (matrix of size K by V): $\beta_{i,w}$

Score

$$f(x,z) \equiv \sum_{i} w_{i}\phi_{i}(x,z)$$
(1)

Assume *K* parts of speech, a lexicon size of *V*, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length *K*): $\pi_i = \log p(z_1 = i)$
- θ Transition matrix (matrix of size K by K): $\theta_{i,j} = \log p(z_n = j | z_{n-1} = i)$
- β An emission matrix (matrix of size K by V): $\beta_{i,w}$

Score

$$f(x,z) \equiv \sum_{i} w_{i}\phi_{i}(x,z)$$
(1)

Assume *K* parts of speech, a lexicon size of *V*, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length *K*): $\pi_i = \log p(z_1 = i)$
- θ Transition matrix (matrix of size K by K): $\theta_{i,j} = \log p(z_n = j | z_{n-1} = i)$
- β An emission matrix (matrix of size K by V): $\beta_{j,w} = \log p(x_n = w | z_n = j)$

Score

$$f(x,z) \equiv \sum_{i} w_{i}\phi_{i}(x,z)$$
(1)

 Given an unobserved sequence of length L, {x₁,..., x_L}, we want to find a sequence {z₁...z_L} with the highest score.

- Given an unobserved sequence of length L, {x₁,...,x_L}, we want to find a sequence {z₁...z_L} with the highest score.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$f_1(k) = \pi_k + \beta_{k,x_i} \tag{2}$$

$$f_n(k) = \max_j \left(f_{n-1}(j) + \theta_{j,k} \right) + \beta_{k,x_n}$$
(3)

- Given an unobserved sequence of length L, {x₁,...,x_L}, we want to find a sequence {z₁...z_L} with the highest score.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to *t* that ends in state *k*.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$f_1(k) = \pi_k + \beta_{k,x_i} \tag{2}$$

$$f_n(k) = \max_j \left(f_{n-1}(j) + \theta_{j,k} \right) + \beta_{k,x_n}$$
(3)

- Given an unobserved sequence of length L, {x₁,...,x_L}, we want to find a sequence {z₁...z_L} with the highest score.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$f_1(k) = \pi_k + \beta_{k,x_i} \tag{2}$$

$$f_n(k) = \max_j \left(f_{n-1}(j) + \theta_{j,k} \right) + \beta_{k,x_n}$$
(3)

- Given an unobserved sequence of length L, {x₁,...,x_L}, we want to find a sequence {z₁...z_L} with the highest score.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to *t* that ends in state *k*.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$f_1(k) = \pi_k + \beta_{k,x_i} \tag{2}$$

$$f_n(k) = \max_j \left(f_{n-1}(j) + \theta_{j,k} \right) + \frac{\beta_{k,x_n}}{\beta_{k,x_n}}$$
(3)

- The complexity of this is now K^2L .
- Garden path sentences like "the old man the boats" require all cells
- But just computing the max isn't enough. We also have to remember where we came from. (Breadcrumbs from best previous state.)

$$\Psi_n = \operatorname{argmax}_j f_{n-1}(j) + \theta_{j,k} \tag{4}$$

- The complexity of this is now K^2L .
- Garden path sentences like "the old man the boats" require all cells
- But just computing the max isn't enough. We also have to remember where we came from. (Breadcrumbs from best previous state.)

$$\Psi_n = \operatorname{argmax}_j f_{n-1}(j) + \theta_{j,k} \tag{4}$$

Let's do that for the sentence "come and get it"

POS	π_k	β_{k,x_1}	$f_1(k)$
MOD	log 0.234	log 0.024	-5.18
DET	log 0.234	log 0.032	-4.89
CONJ	log 0.234	log 0.024	-5.18
N	log 0.021	log 0.016	-7.99
PREP	log 0.021	log 0.024	-7.59
PRO	log 0.021	log 0.016	-7.99
V	log 0.234	log 0.121	-3.56

come and get it (with HMM probabilities)

Why logarithms?

- 1. More interpretable than a float with lots of zeros.
- 2. Underflow is less of an issue
- 3. Generalizes to linear models (next!)
- 4. Addition is cheaper than multiplication

$$log(ab) = log(a) + log(b)$$

(5)

POS	$f_1(j)$	$f_2(CONJ)$
MOD	-5.18	
DET	-4.89	
CONJ	-5.18	
N	-7.99	
PREP	-7.59	
PRO	-7.99	
V	-3.56	

POS	$f_1(j)$	$f_2(CONJ)$
MOD	-5.18	
DET	-4.89	
CONJ	-5.18	???
N	-7.99	
PREP	-7.59	
PRO	-7.99	
V	-3.56	

POS	$f_1(j)$	$f_1(j) + \theta_{j,\text{CONJ}}$	f ₂ (CONJ)
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		

POS	$f_1(j)$	$f_1(j) + \theta_{j,\text{CONJ}}$	f ₂ (CONJ)
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		

$$f_0(V) + \theta_{V, \text{CONJ}} = f_0(k) + \theta_{V, \text{CONJ}} = -3.56 + -1.65$$

POS	$f_1(j)$	$f_1(j) + \theta_{j,\text{CONJ}}$	f ₂ (CONJ)
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56	-5.21	

POS	$f_1(j)$	$f_1(j) + \theta_{j,\text{CONJ}}$	$f_2(CONJ)$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99	≤ -7.99	
PREP	-7.59	≤ -7.59	
PRO	-7.99	≤ -7.99	
V	-3.56	-5.21	

POS	$f_1(j)$	$f_1(j) + \theta_{j,\text{CONJ}}$	f ₂ (CONJ)
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	???
N	-7.99	≤ -7.99	
PREP	-7.59	≤ -7.59	
PRO	-7.99	≤ -7.99	
V	-3.56	-5.21	

POS	$f_1(j)$	$f_1(j) + \theta_{j,\text{CONJ}}$	f ₂ (CONJ)
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	???
N	-7.99	≤ -7.99	
PREP	-7.59	≤ -7.59	
PRO	-7.99	≤ -7.99	
V	-3.56	-5.21	

POS	$f_1(j)$	$f_1(j) + \theta_{j,\text{CONJ}}$	f ₂ (CONJ)
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤ -7.99	
PREP	-7.59	≤ -7.59	
PRO	-7.99	≤ -7.99	
V	-3.56	-5.21	

log f_1(k)
$$=$$
 $-5.21 + eta_{ ext{CONJ}, ext{ and }} =$

POS	$f_1(j)$	$f_1(j) + \theta_{j,\text{CONJ}}$	f ₂ (CONJ)
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤ -7.99	
PREP	-7.59	≤ -7.59	
PRO	-7.99	≤ -7.99	
V	-3.56	-5.21	

come and get it

log f_1(k) =
$$-5.21 + eta_{ ext{CONJ, and}} = -5.21 - 0.64$$

POS	$f_1(j)$	$f_1(j) + \theta_{j,\text{CONJ}}$	f ₂ (CONJ)
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	-6.02
N	-7.99	≤ -7.99	
PREP	-7.59	≤ -7.59	
PRO	-7.99	≤ -7.99	
V	-3.56	-5.21	

POS	$f_1(k)$	$f_2(k)$	<i>b</i> ₂	$f_3(k)$	<i>b</i> ₃	$f_4(k)$	b_4
MOD	-5.18						
DET	-4.89						
CONJ	-5.18	-6.02	V				
N	-7.99						
PREP	-7.59						
PRO	-7.99						
V	-3.56						
WORD	come	anc	ł	g	jet	it	

POS	$f_1(k)$	$f_2(k)$	<i>b</i> ₂	$f_3(k)$	b_3	$f_4(k)$	b_4
MOD	-5.18	-0.00	Х				
DET	-4.89	-0.00	Х				
CONJ	-5.18	-6.02	V				
N	-7.99	-0.00	Х				
PREP	-7.59	-0.00	Х				
PRO	-7.99	-0.00	Х				
V	-3.56	-0.00	Х				
WORD	come	and		g	et	it	

POS	$f_1(k)$	$f_2(k)$	<i>b</i> ₂	$f_3(k)$	<i>b</i> ₃	$f_4(k)$	b_4
MOD	-5.18	-0.00	Х	-0.00	Х		
DET	-4.89	-0.00	Х	-0.00	Х		
CONJ	-5.18	-6.02	V	-0.00	Х		
N	-7.99	-0.00	Х	-0.00	Х		
PREP	-7.59	-0.00	Х	-0.00	Х		
PRO	-7.99	-0.00	Х	-0.00	Х		
V	-3.56	-0.00	Х	-9.03	CONJ		
WORD	come	anc	ł	g	jet	it	

POS	$f_1(k)$	$f_2(k)$	<i>b</i> ₂	$f_3(k)$	b_3	$f_4(k)$	b_4
MOD	-5.18	-0.00	Х	-0.00	Х	-0.00	Х
DET	-4.89	-0.00	Х	-0.00	Х	-0.00	Х
CONJ	-5.18	-6.02	V	-0.00	Х	-0.00	Х
N	-7.99	-0.00	Х	-0.00	Х	-0.00	Х
PREP	-7.59	-0.00	Х	-0.00	Х	-0.00	Х
PRO	-7.99	-0.00	Х	-0.00	Х	-14.6	V
V	-3.56	-0.00	Х	-9.03	CONJ	-0.00	Х
WORD	come	and		g	et	it	