Structure and Predictions

Machine Learning: Jordan Boyd-Graber University of Maryland

INTRODUCTION

Today

- Perceptron
- Structured Perceptron

Today

- Perceptron
- Structured Perceptron

1. Good ML analysis, standard NLP problem
2. Uses structure and representation

Most supervised algorithms are ...

Logistic Regression

Most supervised algorithms are ...

Logistic Regression
$p(y \mid x)=\sigma\left(\sum_{i} \beta_{i} x_{i}\right)$

SVM

Most supervised algorithms are ...

Logistic Regression

$p(y \mid x)=\sigma\left(\sum_{i} \beta_{i} x_{i}\right)$

SVM

$$
\operatorname{sign}(\vec{w} \cdot x+b)
$$

- What statistical property do these (and many others share)?

Most supervised algorithms are ...

Logistic Regression

$p(y \mid x)=\sigma\left(\sum_{i} \beta_{i} x_{i}\right)$

SVM

$$
\operatorname{sign}(\vec{w} \cdot x+b)
$$

- What statistical property do these (and many others share)?
- Hint: $p\left(y_{i}, y_{j} \mid x_{i}, x_{j}\right)=p\left(y_{i} \mid x_{i}\right) p\left(y_{j} \mid x_{j}\right)$

Most supervised algorithms are ...

Logistic Regression

$p(y \mid x)=\sigma\left(\sum_{i} \beta_{i} x_{i}\right)$

SVM

$$
\operatorname{sign}(\vec{w} \cdot x+b)
$$

- What statistical property do these (and many others share)?
- Hint: $p\left(y_{i}, y_{j} \mid x_{i}, x_{j}\right)=p\left(y_{i} \mid x_{i}\right) p\left(y_{j} \mid x_{j}\right)$
- Independent!

Is this how the world works?

Is this how the world works?

Also particularly relevant for 2016: correlated voting patterns

POS Tagging: Task Definition

- Annotate each word in a sentence with a part-of-speech marker.
- Lowest level of syntactic analysis.

John	saw	the	saw	and	decided	to	take	it	to	the	table
NNP	VBD	DT	NN	CC	VBD	TO	VB	PRP	IN	DT	NN

Typical Features (ϕ)

Assume K parts of speech, a lexicon size of V, a series of observations $\left\{x_{1}, \ldots, x_{N}\right\}$, and a series of unobserved states $\left\{z_{1}, \ldots, z_{N}\right\}$.
π Start state scores (vector of length K): π_{i}
θ Transition matrix (matrix of size K by K): $\theta_{i, j}$
β An emission matrix (matrix of size K by V): $\beta_{j, w}$

Typical Features (ϕ)

Assume K parts of speech, a lexicon size of V, a series of observations $\left\{x_{1}, \ldots, x_{N}\right\}$, and a series of unobserved states $\left\{z_{1}, \ldots, z_{N}\right\}$.
π Start state scores (vector of length K): π_{i}
θ Transition matrix (matrix of size K by K): $\theta_{i, j}$
β An emission matrix (matrix of size K by V): $\beta_{j, w}$

Score

$$
\begin{equation*}
f(x, z) \equiv \sum_{i} w_{i} \phi_{i}(x, z) \tag{1}
\end{equation*}
$$

Typical Features (ϕ)

Assume K parts of speech, a lexicon size of V, a series of observations $\left\{x_{1}, \ldots, x_{N}\right\}$, and a series of unobserved states $\left\{z_{1}, \ldots, z_{N}\right\}$.
π Start state scores (vector of length K): π_{i}
θ Transition matrix (matrix of size K by K): $\theta_{i, j}$
β An emission matrix (matrix of size K by V): $\beta_{j, w}$

Score

$$
\begin{equation*}
f(x, z) \equiv \sum_{i} w_{i} \phi_{i}(x, z) \tag{1}
\end{equation*}
$$

Total score of hypothesis z given input x

Typical Features (ϕ)

Assume K parts of speech, a lexicon size of V, a series of observations $\left\{x_{1}, \ldots, x_{N}\right\}$, and a series of unobserved states $\left\{z_{1}, \ldots, z_{N}\right\}$.
π Start state scores (vector of length K): π_{i}
θ Transition matrix (matrix of size K by K): $\theta_{i, j}$
β An emission matrix (matrix of size K by V): $\beta_{j, w}$

Score

$$
\begin{equation*}
f(x, z) \equiv \sum_{i} w_{i} \phi_{i}(x, z) \tag{1}
\end{equation*}
$$

Feature weight

Typical Features (ϕ)

Assume K parts of speech, a lexicon size of V, a series of observations $\left\{x_{1}, \ldots, x_{N}\right\}$, and a series of unobserved states $\left\{z_{1}, \ldots, z_{N}\right\}$.
π Start state scores (vector of length K): π_{i}
θ Transition matrix (matrix of size K by K): $\theta_{i, j}$
β An emission matrix (matrix of size K by V): $\beta_{j, w}$

Score

$$
\begin{equation*}
f(x, z) \equiv \sum_{i} w_{i} \phi_{i}(x, z) \tag{1}
\end{equation*}
$$

Feature present (binary)

Typical Features (ϕ)

Assume K parts of speech, a lexicon size of V, a series of observations $\left\{x_{1}, \ldots, x_{N}\right\}$, and a series of unobserved states $\left\{z_{1}, \ldots, z_{N}\right\}$.
π Start state scores (vector of length K): π_{i}
θ Transition matrix (matrix of size K by K): $\theta_{i, j}$
β An emission matrix (matrix of size K by V): $\beta_{j, w}$

Score

$$
\begin{equation*}
f(x, z) \equiv \sum_{i} w_{i} \phi_{i}(x, z) \tag{1}
\end{equation*}
$$

Two problems: How do we move from data to algorithm? (Estimation) How do we move from a model and unlabled data to labeled data? (Inference)

Typical Features (ϕ)

Assume K parts of speech, a lexicon size of V, a series of observations $\left\{x_{1}, \ldots, x_{N}\right\}$, and a series of unobserved states $\left\{z_{1}, \ldots, z_{N}\right\}$.
π Start state scores (vector of length K): π_{i}
θ Transition matrix (matrix of size K by K): $\theta_{i, j}$
β An emission matrix (matrix of size K by V): $\beta_{j, w}$

Score

$$
\begin{equation*}
f(x, z) \equiv \sum_{i} w_{i} \phi_{i}(x, z) \tag{1}
\end{equation*}
$$

Two problems: How do we move from data to algorithm? (Estimation: HMM) How do we move from a model and unlabled data to labeled data? (Inference)

Typical Features (ϕ)

Assume K parts of speech, a lexicon size of V, a series of observations $\left\{x_{1}, \ldots, x_{N}\right\}$, and a series of unobserved states $\left\{z_{1}, \ldots, z_{N}\right\}$.
π Start state scores (vector of length K): π_{i}
θ Transition matrix (matrix of size K by K): $\theta_{i, j}$
β An emission matrix (matrix of size K by V): $\beta_{j, w}$

Score

$$
\begin{equation*}
f(x, z) \equiv \sum_{i} w_{i} \phi_{i}(x, z) \tag{1}
\end{equation*}
$$

Two problems: How do we move from data to algorithm? (Estimation: HMM) How do we move from a model and unlabled data to labeled data? (Inference)

Typical Features (ϕ)

Assume K parts of speech, a lexicon size of V, a series of observations $\left\{x_{1}, \ldots, x_{N}\right\}$, and a series of unobserved states $\left\{z_{1}, \ldots, z_{N}\right\}$.
π Start state scores (vector of length K): $\pi_{i}=\log p\left(z_{1}=i\right)$
θ Transition matrix (matrix of size K by K): $\theta_{i, j}$
β An emission matrix (matrix of size K by V): $\beta_{j, w}$

Score

$$
\begin{equation*}
f(x, z) \equiv \sum_{i} w_{i} \phi_{i}(x, z) \tag{1}
\end{equation*}
$$

Two problems: How do we move from data to algorithm? (Estimation: HMM) How do we move from a model and unlabled data to labeled data? (Inference)

Typical Features (ϕ)

Assume K parts of speech, a lexicon size of V, a series of observations $\left\{x_{1}, \ldots, x_{N}\right\}$, and a series of unobserved states $\left\{z_{1}, \ldots, z_{N}\right\}$.
π Start state scores (vector of length K): $\pi_{i}=\log p\left(z_{1}=i\right)$
θ Transition matrix (matrix of size K by K): $\theta_{i, j}=\log p\left(z_{n}=j \mid z_{n-1}=i\right)$
β An emission matrix (matrix of size K by V): $\beta_{j, w}$

Score

$$
\begin{equation*}
f(x, z) \equiv \sum_{i} w_{i} \phi_{i}(x, z) \tag{1}
\end{equation*}
$$

Two problems: How do we move from data to algorithm? (Estimation: HMM) How do we move from a model and unlabled data to labeled data? (Inference)

Typical Features (ϕ)

Assume K parts of speech, a lexicon size of V, a series of observations $\left\{x_{1}, \ldots, x_{N}\right\}$, and a series of unobserved states $\left\{z_{1}, \ldots, z_{N}\right\}$.
π Start state scores (vector of length K): $\pi_{i}=\log p\left(z_{1}=i\right)$
θ Transition matrix (matrix of size K by K): $\theta_{i, j}=\log p\left(z_{n}=j \mid z_{n-1}=i\right)$
β An emission matrix (matrix of size K by V): $\beta_{j, w}=\log p\left(x_{n}=w \mid z_{n}=j\right)$

Score

$$
\begin{equation*}
f(x, z) \equiv \sum_{i} w_{i} \phi_{i}(x, z) \tag{1}
\end{equation*}
$$

Two problems: How do we move from data to algorithm? (Estimation: HMM) How do we move from a model and unlabled data to labeled data? (Inference)

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest score.

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest score.
- It's impossible to compute K^{L} possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$
\begin{equation*}
f_{1}(k)=\pi_{k}+\beta_{k, x_{i}} \tag{2}
\end{equation*}
$$

- Recursion:

$$
\begin{equation*}
f_{n}(k)=\max _{j}\left(f_{n-1}(j)+\theta_{j, k}\right)+\beta_{k, x_{n}} \tag{3}
\end{equation*}
$$

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest score.
- It's impossible to compute K^{L} possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$
\begin{equation*}
f_{1}(k)=\pi_{k}+\beta_{k, x_{i}} \tag{2}
\end{equation*}
$$

- Recursion:

$$
\begin{equation*}
f_{n}(k)=\max _{j}\left(f_{n-1}(j)+\theta_{j, k}\right)+\beta_{k, x_{n}} \tag{3}
\end{equation*}
$$

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest score.
- It's impossible to compute K^{L} possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$
\begin{equation*}
f_{1}(k)=\pi_{k}+\beta_{k, x_{i}} \tag{2}
\end{equation*}
$$

- Recursion:

$$
\begin{equation*}
f_{n}(k)=\max _{j}\left(f_{n-1}(j)+\theta_{j, k}\right)+\beta_{k, x_{n}} \tag{3}
\end{equation*}
$$

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest score.
- It's impossible to compute K^{L} possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$
\begin{equation*}
f_{1}(k)=\pi_{k}+\beta_{k, x_{i}} \tag{2}
\end{equation*}
$$

- Recursion:

$$
\begin{equation*}
f_{n}(k)=\max _{j}\left(f_{n-1}(j)+\theta_{j, k}\right)+\beta_{k, x_{n}} \tag{3}
\end{equation*}
$$

- The complexity of this is now $K^{2} L$.
- Garden path sentences like "the old man the boats" require all cells
- But just computing the max isn't enough. We also have to remember where we came from. (Breadcrumbs from best previous state.)

$$
\begin{equation*}
\Psi_{n}=\operatorname{argmax}_{j} f_{n-1}(j)+\theta_{j, k} \tag{4}
\end{equation*}
$$

- The complexity of this is now $K^{2} L$.
- Garden path sentences like "the old man the boats" require all cells
- But just computing the max isn't enough. We also have to remember where we came from. (Breadcrumbs from best previous state.)

$$
\begin{equation*}
\Psi_{n}=\operatorname{argmax}_{j} f_{n-1}(j)+\theta_{j, k} \tag{4}
\end{equation*}
$$

- Let's do that for the sentence "come and get it"

POS	π_{k}	$\beta_{k, x_{1}}$	$f_{1}(k)$
MOD	$\log 0.234$	$\log 0.024$	-5.18
DET	$\log 0.234$	$\log 0.032$	-4.89
CONJ	$\log 0.234$	$\log 0.024$	-5.18
N	$\log 0.021$	$\log 0.016$	-7.99
PREP	$\log 0.021$	$\log 0.024$	-7.59
PRO	$\log 0.021$	$\log 0.016$	-7.99
V	$\log 0.234$	$\log 0.121$	-3.56

come and get it (with HMM probabilities)
Why logarithms?

1. More interpretable than a float with lots of zeros.
2. Underflow is less of an issue
3. Generalizes to linear models (next!)
4. Addition is cheaper than multiplication

$$
\begin{equation*}
\log (a b)=\log (a)+\log (b) \tag{5}
\end{equation*}
$$

POS	$f_{1}(j)$		$f_{2}(\mathrm{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		
come and get it			

POS	$f_{1}(j)$		$f_{2}(\mathrm{CONJ})$
MOD	-5.18		
DET	-4.89		$? ? ?$
CONJ	-5.18		
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		
come and get it			

POS	$f_{1}(j)$	$f_{1}(j)+\theta_{j, \mathrm{CONJ}}$	$f_{2}(\mathrm{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		
come and get it			

POS	$f_{1}(j)$	$f_{1}(j)+\theta_{j, \mathrm{CONJ}}$	$f_{2}(\mathrm{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		
come and get it			

$$
f_{0}(\mathrm{~V})+\theta \mathrm{V}, \mathrm{CONJ}=f_{0}(k)+\theta \mathrm{V}, \mathrm{CONJ}=-3.56+-1.65
$$

POS	$f_{1}(j)$	$f_{1}(j)+\theta_{j, \mathrm{CONJ}}$	$f_{2}(\mathrm{CONJ})$		
MOD	-5.18				
DET	-4.89				
CONJ	-5.18				
N	-7.99				
PREP	-7.59				
PRO	-7.99	-5.21			
V	-3.56	come and get it			

POS	$f_{1}(j)$	$f_{1}(j)+\theta_{j, \mathrm{CONJ}}$	$f_{2}(\mathrm{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		$? ? ?$
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

POS	$f_{1}(j)$	$f_{1}(j)+\theta_{j, \mathrm{CONJ}}$	$f_{2}(\mathrm{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	$? ? ?$
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

POS	$f_{1}(j)$	$f_{1}(j)+\theta_{j, \text { CONJ }}$	$f_{2}(\mathrm{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	$? ? ?$
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

POS	$f_{1}(j)$	$f_{1}(j)+\theta_{j, \text { CONJ }}$	$f_{2}(\mathrm{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

$\log f_{1}(k)=-5.21+\beta_{\mathrm{CONJ}}$, and $=$

POS	$f_{1}(j)$	$f_{1}(j)+\theta_{j, \text { CONJ }}$	$f_{2}(\mathrm{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

$\log f_{1}(k)=-5.21+\beta_{\mathrm{CONJ}}$, and $=-5.21-0.64$

POS	$f_{1}(j)$	$f_{1}(j)+\theta_{j, \text { CONJ }}$	$f_{2}(\mathrm{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	-6.02
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

POS	$f_{1}(k)$	$f_{2}(k)$	b_{2}	$f_{3}(k)$	b_{3}	$f_{4}(k)$	b_{4}
MOD	-5.18						
DET	-4.89						
CONJ	-5.18	-6.02	V				
N	-7.99						
PREP	-7.59						
PRO	-7.99						
V	-3.56						
WORD	come	and		get		it	

POS	$f_{1}(k)$	$f_{2}(k)$	b_{2}	$f_{3}(k)$	b_{3}	$f_{4}(k)$	b_{4}
MOD	-5.18	-0.00	X				
DET	-4.89	-0.00	\times				
CONJ	-5.18	-6.02	V				
N	-7.99	-0.00	X				
PREP	-7.59	-0.00	X				
PRO	-7.99	-0.00	X				
V	-3.56	-0.00	X				
WORD	Come	and		get		it	

POS	$f_{1}(k)$	$f_{2}(k)$	b_{2}	$f_{3}(k)$	b_{3}	$f_{4}(k)$	b_{4}							
MOD	-5.18	-0.00	X	-0.00	\times									
DET	-4.89	-0.00	\times	-0.00	\times									
CONJ	-5.18	-6.02	V	-0.00	\times									
N	-7.99	-0.00	\times	-0.00	\times									
PREP	-7.59	-0.00	\times	-0.00	\times									
PRO	-7.99	-0.00	\times	-0.00	\times									
V	-3.56	-0.00	\times	-9.03	CONJ									
WORD	Come	and									get			it

POS	$f_{1}(k)$	$f_{2}(k)$	b_{2}	$f_{3}(k)$	b_{3}	$f_{4}(k)$	b_{4}
MOD	-5.18	-0.00	X	-0.00	X	-0.00	X
DET	-4.89	-0.00	X	-0.00	X	-0.00	X
CONJ	-5.18	-6.02	V	-0.00	X	-0.00	X
N	-7.99	-0.00	X	-0.00	X	-0.00	X
PREP	-7.59	-0.00	X	-0.00	X	-0.00	X
PRO	-7.99	-0.00	X	-0.00	X	-14.6	V
V	-3.56	-0.00	X	-9.03	CONJ	-0.00	X
WORD	come	and		get		it	

