

Regression

Machine Learning: Jordan Boyd-Graber University of Maryland MARCH 8, 2018

Content Questions

dimension	weight
b	1
<i>w</i> ₁	2.0
W ₂	-1.0
σ	1.0

- **1.** $\mathbf{x}_1 = \{0.0, 0.0\}; y_1 =$
- **2**. $\mathbf{x}_2 = \{1.0, 1.0\}; y_2 =$
- **3**. $\mathbf{x}_3 = \{.5, 2\}; y_3 =$

dimension	weight
b	1
<i>w</i> ₁	2.0
W ₂	-1.0
σ	1.0

1. $\mathbf{x}_1 = \{0.0, 0.0\}; y_1 = 1.0$

2.
$$\mathbf{x}_2 = \{1.0, 1.0\}; y_2 =$$

3. $\mathbf{x}_3 = \{.5, 2\}; y_3 =$

dimension	weight
b	1
<i>w</i> ₁	2.0
W ₂	-1.0
σ	1.0

- 1. $\mathbf{x}_1 = \{0.0, 0.0\}; y_1 = 1.0$
- **2**. $\mathbf{x}_2 = \{1.0, 1.0\}; y_2 = 2.0$
- **3**. $\mathbf{x}_3 = \{.5, 2\}; y_3 =$

dimension	weight
b	1
<i>w</i> ₁	2.0
W ₂	-1.0
σ	1.0

- 1. $\mathbf{x}_1 = \{0.0, 0.0\}; y_1 = 1.0$
- **2**. $\mathbf{x}_2 = \{1.0, 1.0\}; y_2 = 2.0$
- **3**. $\mathbf{x}_3 = \{.5, 2\}; y_3 = 0.0$

dimension	weight	
w ₀	1	
<i>w</i> ₁	2.0	
<i>W</i> ₂	-1.0	
σ	1.0	

$$p(y|x) = y \sim N\left(b + \sum_{j=1}^{p} w_j x_j, \sigma^2\right)$$
$$p(y|x) = \frac{\exp\left\{-\frac{(y-\hat{y})^2}{2}\right\}}{\sqrt{2\pi}}$$

1.
$$p(y_1 = 1 | \mathbf{x}_1 = \{0.0, 0.0\}) =$$

2. $p(y_2 = 3 | \mathbf{x}_2 = \{1.0, 1.0\}) =$
3. $p(y_3 = -1 | \mathbf{x}_3 = \{.5, 2\}) =$

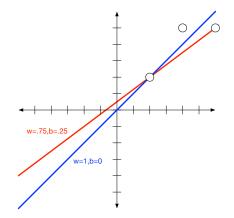
dimension	weight
w ₀	1
<i>w</i> ₁	2.0
<i>W</i> ₂	-1.0
σ	1.0

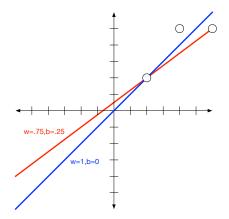
$$p(y|x) = y \sim N\left(b + \sum_{j=1}^{p} w_j x_j, \sigma^2\right)$$
$$p(y|x) = \frac{\exp\left\{-\frac{(y-\hat{y})^2}{2}\right\}}{\sqrt{2\pi}}$$

1.
$$p(y_1 = 1 | \mathbf{x}_1 = \{0.0, 0.0\}) = 0.399$$

2. $p(y_2 = 3 | \mathbf{x}_2 = \{1.0, 1.0\}) =$
3. $p(y_3 = -1 | \mathbf{x}_3 = \{.5, 2\}) =$

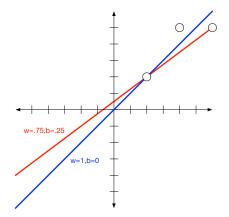
dimension	weight
w ₀	1
<i>w</i> ₁	2.0
<i>W</i> ₂	-1.0
σ	1.0


$$p(y|x) = y \sim N\left(b + \sum_{j=1}^{p} w_j x_j, \sigma^2\right)$$
$$p(y|x) = \frac{\exp\left\{-\frac{(y-\hat{y})^2}{2}\right\}}{\sqrt{2\pi}}$$


1.
$$p(y_1 = 1 | \mathbf{x}_1 = \{0.0, 0.0\}) = 0.399$$

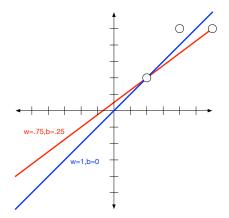
2. $p(y_2 = 3 | \mathbf{x}_2 = \{1.0, 1.0\}) = 0.242$
3. $p(y_3 = -1 | \mathbf{x}_3 = \{.5, 2\}) =$

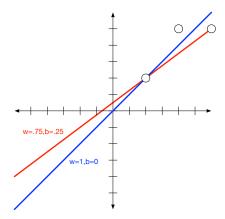
dimension	weight
w ₀	1
<i>w</i> ₁	2.0
<i>W</i> ₂	-1.0
σ	1.0

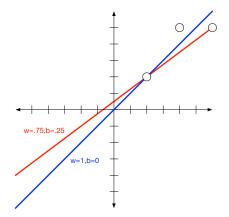

$$p(y|x) = y \sim N\left(b + \sum_{j=1}^{p} w_j x_j, \sigma^2\right)$$
$$p(y|x) = \frac{\exp\left\{-\frac{(y-\hat{y})^2}{2}\right\}}{\sqrt{2\pi}}$$

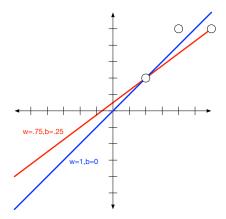
1.
$$p(y_1 = 1 | \mathbf{x}_1 = \{0.0, 0.0\}) = 0.399$$

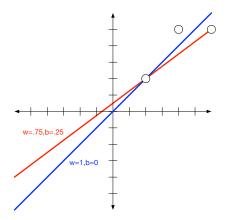
2. $p(y_2 = 3 | \mathbf{x}_2 = \{1.0, 1.0\}) = 0.242$
3. $p(y_3 = -1 | \mathbf{x}_3 = \{.5, 2\}) = 0.242$




Which is the better OLS solution?


Blue! It has lower RSS.


What is the RSS of the better solution?


$$\frac{1}{2}\sum_{i}r_{i}^{2} = \frac{1}{2}\left((1-1)^{2} + (2.5-2)^{2} + (2.5-3)^{2}\right) = \frac{1}{4}$$

What is the RSS of the red line?

$$\frac{1}{2}\sum_{i}r_{i}^{2} = \frac{1}{2}\left((1-1)^{2} + (2.5-1.75)^{2} + (2.5-2.5)^{2}\right) = \frac{3}{8}$$

For what λ does the blue line have a better regularized solution with L_2 and L_1 ?

 L_2

When Regularization Wins

 $\operatorname{RSS}(x, y, w) + \lambda \sum_{d} w_{d}^{2} > \operatorname{RSS}(x, y, w) + \lambda \sum_{d} w_{d}^{2}$

 L_1

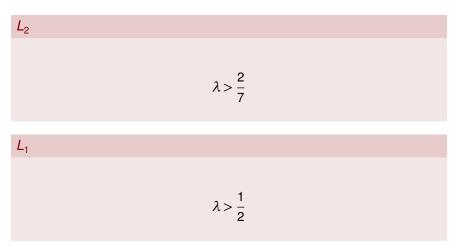
L ₂	
	$RSS(x, y, w) + \lambda \sum_{d} w_{d}^{2} > RSS(x, y, w) + \lambda \sum_{d} w_{d}^{2}$ $\frac{1}{4} + \lambda 1 > \frac{3}{8} + \lambda \frac{9}{16}$
L ₁	

L ₂	
	$\frac{1}{2} + \lambda_1 > \frac{3}{2} + \lambda_2 = \frac{9}{2}$
	$\frac{\frac{1}{4} + \lambda_1 > \frac{3}{8} + \lambda \frac{9}{16}}{\frac{7}{16}\lambda > \frac{1}{8}}$
	$\frac{1}{16}\lambda > \frac{1}{8}$
<i>L</i> ₁	

L ₂	
	$\frac{7}{2}\lambda > \frac{1}{2}$
	$\frac{\frac{7}{16}\lambda > \frac{1}{8}}{\lambda > \frac{2}{7}}$
	$\lambda > \frac{1}{7}$
L ₁	

L ₂	
	$\lambda > \frac{2}{7}$
L ₁	
	$\operatorname{RSS}(x, y, w) + \lambda \sum_{d} w_{d} > \operatorname{RSS}(x, y, w) + \lambda \sum_{d} w_{d} $

$$\lambda > \frac{2}{7}$$


$$RSS(x, y, w) + \lambda \sum_{d} |w_{d}| > RSS(x, y, w) + \lambda \sum_{d} |w_{d}|$$

$$\frac{1}{4} + \lambda 1 > \frac{3}{8} + \lambda \frac{3}{4}$$

L ₂		
	$\lambda > \frac{2}{7}$	
	1	
<i>L</i> ₁		
	1 3 3	
	$\frac{1}{4} + \lambda 1 > \frac{3}{8} + \lambda \frac{3}{4}$	

L ₂	
	$\lambda > \frac{2}{7}$
	1
L ₁	
	$\frac{1}{4}\lambda > \frac{1}{8}$
	4 8

<i>L</i> ₂	
	$\lambda > \frac{2}{7}$
	T
<i>L</i> ₁	
	$\frac{1}{-\lambda} > \frac{1}{-\lambda}$
	$\frac{\frac{1}{4}\lambda > \frac{1}{8}}{\lambda > \frac{1}{2}}$
	$\lambda > \frac{1}{2}$

Bigger λ : preference for lower weights *w*

MPG Dataset

- Predict mpg from features of a car
 - 1. Number of cylinders
 - 2. Displacement
 - 3. Horsepower
 - 4. Weight
 - 5. Acceleration
 - 6. Year
 - 7. Country (ignore this)

Simple Regression

If w = 0, what's the intercept?

Simple Regression

If w = 0, what's the intercept? 23.4

Sklearn

Simple Linear Regression

What are the coefficients for OLS?

Simple Linear Regression

What are the coefficients for OLS?

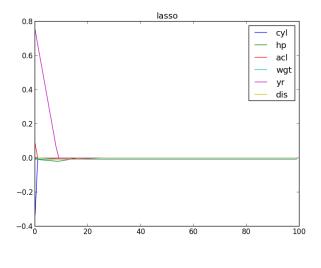
Coeff	icients		
cyl	-0.329859		
dis	0.007678		
hp	-0.000391		
wgt	-0.006795		
acl	0.085273		
yr	0.753367		

Simple Linear Regression

What are the coefficients for OLS?

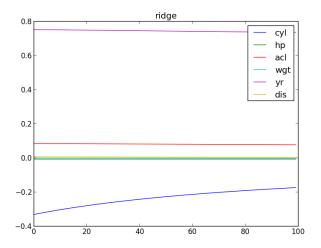
Coeffi	cients		
cyl	-0.329859		
dis	0.007678		
hp	-0.000391		
wgt	-0.006795		
acl	0.085273		
yr	0.753367		

Intercept: -14.5


Simple Linear Regression

from sklearn import linear_model linear_model.LinearRegression() fit = model.fit(x, y)

Lasso


- As you increase the weight of alpha, what feature dominates?
- What happens to the other features?

Weight is Everything

mpg - 46 - 0.01 Weight

How is ridge different?

Regression isn't special

- Feature engineering
- Regularization
- Overfitting
- Development / Test Data