

Boosting

Machine Learning: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM ROB SCHAPIRE

Motivating Example

Goal

We have a bunch of classifiers; how do we get best possible combination?

- SVM works well on X
- Neural model works well on Y
- Logistic Regression works well on Z
- Hard to know which model to use!

Motivating Example

Goal

We have a bunch of classifiers; how do we get best possible combination?

- SVM works well on X
- Neural model works well on Y
- Logistic Regression works well on Z
- Hard to know which model to use!
- Most Kaggle competitions won using ensemble approaches

Boosting Approach

- devise computer program for deriving rough rules of thumb
- apply procedure to subset of examples
- obtain rule of thumb
- apply to second subset of examples
- obtain second rule of thumb
- repeat T times

Details

- How to choose examples
- How to combine rules of thumb

Details

- How to choose examples concentrate on <u>hardest</u> examples (those most often misclassified by previous rules of thumb)
- How to combine rules of thumb

Details

- How to choose examples concentrate on <u>hardest</u> examples (those most often misclassified by previous rules of thumb)
- How to combine rules of thumb take (weighted) majority vote of rules of thumb

Boosting

Definition

general method of converting rough rules of thumb into highly accurate prediction rule

- assume given weak learning algorithm that can consistently find classifiers (rules of thumb) at least slightly better than random, say, accuracy ≥ 55% (in two-class setting)
- given sufficient data, a boosting algorithm can provably construct single classifier with very high accuracy, say, 99%

Formal Description

- Training set $(x_1, y_1) \dots (x_m, y_m)$
- $y_i \in \{-1, +1\}$ is the label of instance x_i

Formal Description

- Training set $(x_1, y_1) \dots (x_m, y_m)$
- $y_i \in \{-1, +1\}$ is the label of instance x_i
- For *t* = 1,...*T*:
 - Construct distribution D_t on $\{1, \ldots, m\}$
 - Find weak classifier

$$h_t: \mathscr{X} \mapsto \{-1, +1\} \tag{1}$$

with small error e_t on D_t :

$$\epsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right] \tag{2}$$

Formal Description

- Training set $(x_1, y_1) \dots (x_m, y_m)$
- $y_i \in \{-1, +1\}$ is the label of instance x_i
- For *t* = 1,...*T*:
 - Construct distribution D_t on $\{1, \ldots, m\}$
 - Find weak classifier

$$h_t: \mathscr{X} \mapsto \{-1, +1\} \tag{1}$$

with small error e_t on D_t :

$$\epsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right] \tag{2}$$

Output final classifier H_{final}

Data distribution D_t

- Data distribution D_t
 - $\square D_1(i) = \frac{1}{m}$
 - Given D_t and h_t :

$$D_{t+1}(i) \propto D_t(i) \cdot \exp\left\{-\alpha_t y_i h_t(x_i)\right\}$$
(3)

where $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$

- Data distribution D_t
 - $\square D_1(i) = \frac{1}{m}$
 - Given D_t and h_t :

$$D_{t+1}(i) \propto D_t(i) \cdot \exp\left\{-\alpha_t y_i h_t(x_i)\right\}$$
(3)

where $\alpha_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right) > 0$

Bigger if wrong, smaller if right

- Data distribution D_t
 - $\square D_1(i) = \frac{1}{m}$
 - Given D_t and h_t :

$$D_{t+1}(i) \propto D_t(i) \cdot \exp\left\{-\frac{\alpha_t y_i h_t(x_i)}{2}\right\}$$
(3)

where $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$

Weight by how good the weak learner is

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$ • Given D_t and h_t :

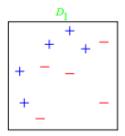
$$D_{t+1}(i) \propto D_t(i) \cdot \exp\left\{-\alpha_t y_i h_t(x_i)\right\}$$
(3)

where
$$\alpha_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right) > 0$$

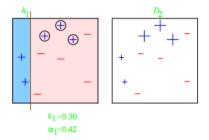
Final classifier:

$$H_{fin}(x) = \operatorname{sign}\left(\sum_{t} \alpha_t h_t(x)\right) \tag{4}$$

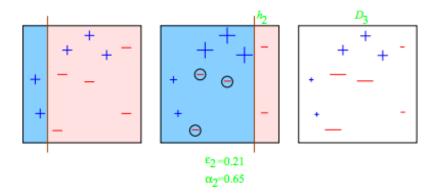
Toy Example



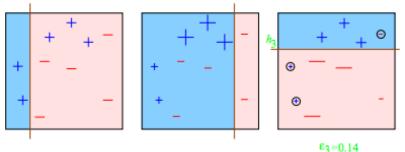
Round 1



Round 2

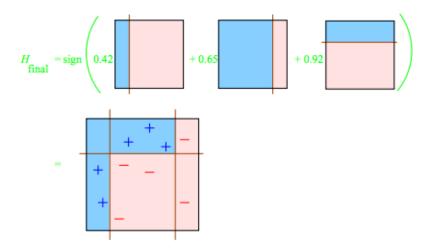


Round 3

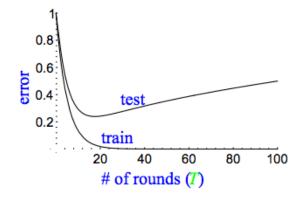


 $\epsilon_{3}=0.14$ $\alpha_{3}=0.92$

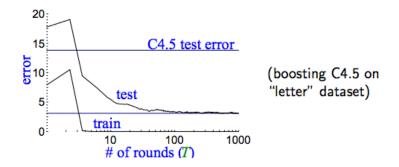
Final Classifier



Generalization



Generalization



Practical Advantages of AdaBoost

- fast
- simple and easy to program
- no parameters to tune (except T)
- flexible: can combine with any learning algorithm
- no prior knowledge needed about weak learner
- provably effective, provided can consistently find rough rules of thumb
 - shift in mind set: goal now is merely to find classifiers barely better than random guessing
- versatile
 - can use with data that is textual, numeric, discrete, etc.
 - has been extended to learning problems well beyond binary classification

Caveats

- performance of AdaBoost depends on data and weak learner
- consistent with theory, AdaBoost can fail if
- weak classifiers too complex
 - overfitting
- weak classifiers too weak ($\gamma_t \rightarrow 0$ too quickly)
 - underfitting
 - □ low margins → overfitting
- empirically, AdaBoost seems especially susceptible to uniform noise