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Roadmap

� Classification: machines labeling data for us

� Previously: naïve Bayes and logistic regression
� This time: SVMs
� (another) example of linear classifier
� State-of-the-art classification
� Good theoretical properties
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Thinking Geometrically

� Suppose you have two classes: vacations and sports

� Suppose you have four documents

Sports

Doc1: {ball, ball, ball, travel}
Doc2: {ball, ball}

Vacations

Doc3: {travel, ball, travel}
Doc4: {travel}

� What does this look like in vector space?
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Put the documents in vector space
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Vector space representation of documents

� Each document is a vector, one component for each term.

� Terms are axes.

� High dimensionality: 10,000s of dimensions and more

� How can we do classification in this space?
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Vector space classification

� As before, the training set is a set of documents, each labeled with its
class.

� In vector space classification, this set corresponds to a labeled set of
points or vectors in the vector space.

� Premise 1: Documents in the same class form a contiguous region.

� Premise 2: Documents from different classes don’t overlap.

� We define lines, surfaces, hypersurfaces to divide regions.
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Classes in the vector space

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

Classes in the vector space
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Should the document ! be assigned to China, UK or Kenya?

Schütze: Support vector machines 12 / 55
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Classes in the vector space
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Based on these separators: ? should be assigned to China
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Classes in the vector space

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

Classes in the vector space

xx
x

x

!
! !!

!

!

China

Kenya

UK
!

Find separators between the classes

Schütze: Support vector machines 12 / 55

How do we find separators that do a good job at classifying new documents
like ?? – Main topic of today
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Linear Classifiers

Linear classifiers

� Definition:
� A linear classifier computes a linear combination or weighted sum

∑

i βixi

of the feature values.
� Classification decision:

∑

i βixi >β0? (β0 is our bias)
� . . . where β0 (the threshold) is a parameter.

� We call this the separator or decision boundary.

� We find the separator based on training set.

� Methods for finding separator: logistic regression, naïve Bayes, linear
SVM

� Assumption: The classes are linearly separable.

� Before, we just talked about equations. What’s the geometric intuition?
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Linear Classifiers

A linear classifier in 1D

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

A linear classifier in 1D

A linear classifier in 1D is
a point x described by the
equation w1d1 = θ

x = θ/w1

Schütze: Support vector machines 15 / 55

� A linear classifier in 1D is a
point x described by the
equation β1x1 =β0

� x =β0/β1

� Points (x1) with β1x1 ≥β0 are
in the class c.

� Points (x1) with β1x1 <β0 are
in the complement class c.
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Linear Classifiers

A linear classifier in 2D

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

A linear classifier in 2D

A linear classifier in 2D is
a line described by the
equation w1d1 + w2d2 = θ

Example for a 2D linear
classifier
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� A linear classifier in 2D is a
line described by the equation
β1x1 +β2x2 =β0

� Example for a 2D linear
classifier

� Points (x1 x2) with
β1x1 +β2x2 ≥β0 are in the
class c.

� Points (x1 x2) with
β1x1 +β2x2 <β0 are in the
complement class c.
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Linear Classifiers

A linear classifier in 3D

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

A linear classifier in 3D

A linear classifier in 3D is
a plane described by the
equation
w1d1 + w2d2 + w3d3 = θ

Schütze: Support vector machines 17 / 55

� A linear classifier in 3D is a
plane described by the
equation
β1x1 +β2x2 +β3x3 =β0

� Example for a 3D linear
classifier

� Points (x1 x2 x3) with
β1x1 +β2x2 +β3x3 ≥β0 are
in the class c.

� Points (x1 x2 x3) with
β1x1 +β2x2 +β3x3 <β0 are
in the complement class c.
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Linear Classifiers

Naive Bayes and Logistic Regression as linear classifiers

Multinomial Naive Bayes is a linear classifier (in log space) defined by:

M
∑

i=1

βixi =β0

where βi = log[P̂(ti |c)/P̂(ti |c̄)], xi = number of occurrences of ti in d , and
β0 =− log[P̂(c)/P̂(c̄)]. Here, the index i , 1≤ i ≤M, refers to terms of the
vocabulary.
Logistic regression is the same (we only put it into the logistic function to
turn it into a probability).

Takeway

Naïve Bayes, logistic regression and SVM are all linear methods. They
choose their hyperplanes based on different objectives: joint likelihood
(NB), conditional likelihood (LR), and the margin (SVM).
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Linear Classifiers

Which hyperplane?
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Linear Classifiers

Which hyperplane?

� For linearly separable training sets: there are infinitely many separating
hyperplanes.

� They all separate the training set perfectly . . .

� . . . but they behave differently on test data.

� Error rates on new data are low for some, high for others.

� How do we find a low-error separator?
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Support Vector Machines

Support vector machines

� Machine-learning research in the last two decades has improved
classifier effectiveness.

� New generation of state-of-the-art classifiers: support vector machines
(SVMs), boosted decision trees, regularized logistic regression, neural
networks, and random forests

� Applications to IR problems, particularly text classification

SVMs: A kind of large-margin classifier

Vector space based machine-learning method aiming to find a decision
boundary between two classes that is maximally far from any point in the
training data (possibly discounting some points as outliers or noise)
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Support Vector Machines

Support Vector Machines

� 2-class training data

� decision boundary→
linear separator

� criterion: being
maximally far away
from any data point→
determines classifier
margin

� linear separator
position defined by
support vectors

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

Support Vector Machines

2-class training data

Schütze: Support vector machines 29 / 55
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Support Vector Machines

2-class training data

decision boundary
→ linear separator

criterion: being
maximally far away
from any data point
→ determines
classifier margin

Margin is
maximized

Schütze: Support vector machines 29 / 55
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Support Vector Machines

� 2-class training data

� decision boundary→
linear separator
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maximally far away
from any data point→
determines classifier
margin
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position defined by
support vectors

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

Why maximize the margin?

Points near decision
surface → uncertain
classification decisions
(50% either way).
A classifier with a large
margin makes no low
certainty classification
decisions.
Gives classification
safety margin w.r.t slight
errors in measurement or
doc. variation

Support vectors

Margin is
maximized

Maximum
margin
decision
hyperplane

Schütze: Support vector machines 30 / 55
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Support Vector Machines

Why maximize the margin?

� SVM classifier: large margin
around decision boundary

� compare to decision hyperplane:
place fat separator between
classes
� unique solution

� decreased memory capacity

� increased ability to correctly
generalize to test data
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Formulation

Equation

� Equation of a hyperplane

~w · xi + b = 0 (1)

� Distance of a point to hyperplane

|~w · xi + b|
||~w ||

(2)

� The margin ρ is given by

ρ ≡ min
(x ,y)∈S

|~w · xi + b|
||~w ||

=
1

||~w ||
(3)

� This is because for any point on the marginal hyperplane, ~w ·x + b =±1
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Formulation

Optimization Problem

We want to find a weight vector ~w and bias b that optimize

min
~w ,b

1

2
||w ||2 (4)

subject to yi(~w · xi + b)≥ 1, ∀i ∈ [1,m].

Next week: algorithm
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Theoretical Guarantees

Three Proofs that Suggest SVMs will Work

� Leave-one-out error

� VC Dimension

� Margin analysis
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Theoretical Guarantees

Leave One Out Error (sketch)

Leave one out error is the error by using one point as your test set
(averaged over all such points).

R̂LOO =
1

m

m
∑

i=1

1
�

hs−{xi } 6= yi

�

(5)

This serves as an unbiased estimate of generalization error for samples of
size m−1:

ES∼Dm

�

R̂LOO

�

=ES′∼Dm−1 [R(hS′)] (6)

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 22 / 29



Theoretical Guarantees

Leave One Out Error (sketch)

Leave one out error is the error by using one point as your test set
(averaged over all such points).

R̂LOO =
1

m

m
∑

i=1

1
�

hs−{xi } 6= yi

�

(5)

This serves as an unbiased estimate of generalization error for samples of
size m−1:

ES∼Dm

�

R̂LOO

�

=ES′∼Dm−1 [R(hS′)] (6)

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 22 / 29



Theoretical Guarantees

Leave One Out Error (sketch)

Let hS be the hypothesis returned by SVMs for a separable sample S, and
let NSV (S) be the number of support vectors that define hS .

ES∼Dm [R(hs)]≤ES∼Dm+1

�

NSV (S)

m + 1

�

(7)

Consider the held out error for xi .

� If xi was not a support vector, the answer doesn’t change.

� If xi was a support vector, it could change the answer; this is when we
can have an error.

There are NSV (S) support vectors and thus NSV (S) possible errors.
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Theoretical Guarantees

VC Dimension Argument

Remember discussion VC dimension for d-dimensional hyperplanes? That
applies here:

R(h)≤ R̂(h) +

√

√2(d + 1) log ε
d+1

m
+

√

√ log 1
δ

2m
(8)

But this is useless when d is large (e.g. for text).
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Theoretical Guarantees

Margin Theory
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Theoretical Guarantees

Margin Loss Function

To see where SVMs really shine, consider the margin loss ρ:

Φρ(x) =











0 if ρ ≤ x

1− x
ρ if 0 ≤ x ≤ρ

1 if x ≤ 0

(9)

The empirical margin loss of a hypothesis h is

R̂ρ(h) =
1

m

m
∑

i=1

Φρ(yih(xi)) (10)
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The fraction of the points in the training sample S that have been
misclassified or classified with confidence less than ρ.
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Theoretical Guarantees

Generalization

For linear classifiers H = {x 7→w · x : ||w || ≤Λ} and data X ∈ {x : ||x || ≤ r}.
Fix ρ > 0 then with probability at least 1−δ, for any h ∈H,

R(h)≤ R̂ρ(h) + 2

√

√ r2Λ2

ρ2m
+

√

√ log 1
δ

2m
(11)

� Data-dependent: must be separable with a margin

� Fortunately, many data do have good margin properties

� SVMs can find good classifiers in those instances
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Recap

Choosing what kind of classifier to use

When building a text classifier, first question: how much training data is
there currently available?

� None?

� Very little?

� A fair amount?

� A huge amount
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Recap

Choosing what kind of classifier to use

When building a text classifier, first question: how much training data is
there currently available?

� None? Hand write rules or use active learning

� Very little? Naïve Bayes

� A fair amount? SVM

� A huge amount Doesn’t matter, use whatever works
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Recap

SVM extensions: What’s next

� Finding solutions
� Slack variables: not perfect line
� Kernels: different geometries
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