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What does it mean to learn something?

� What are the things that we’re learning?

� What does it mean to be learnable?
� Provides a framework for reasoning about what we can theoretically

learn

� Sometime theoretically learnable things are very difficult
� Sometimes things that should be hard actually work
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Example

� Californian just moved to Colorado

� When is it “nice” outside?

� Has a perfect thermometer, but
natives call 50F (10C) “nice”

� Each temperature is an
observation x

� Coloradan concept of “nice” c(x)

� Californian wants to learn
hypothesis h(x) close to c(x)

Generalization error

R(h) = Prx∼D [h(x) 6= c(x)] =Ex∼D [1 [h(x) 6= c(x)]] (1)

[Notation 1 [x] = 1 iff x is true, 0 otherwise]
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Probably Correct

The Californian gets n random examples.

50 70 903010
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Probably Correct

The best rule that conforms with the examples is [a,b].

50 70 903010
a b
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Probably Correct

50 70 903010
a b

c d

Let [c,d] be the correct (unknown) rule. Let ∆ be the gap between. The
probability of being wrong is the probability that n samples missed

∆ca and ∆bd .
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PAC-learning definition

Definition

PAC-learnable A concept C is PAC-learnable if ∃ algorithmA and a
polynomial function f such that for any ε and δ, ∀D(X) and c ∈C

PrS∼Dm [R(hS)≤ ε]≥ 1−δ (2)

for any sample size m≥ f
�

1
ε , 1
δ ,n, |c|

�
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PrS∼Dm [R(hS)≤ ε]≥ 1−δ (2)

for any sample size m≥ f
�

1
ε , 1
δ ,n, |c|

�

Our bound on the generalization error (e.g., we want it to be better than 0.1)
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PAC-learning definition

Definition

PAC-learnable A concept C is PAC-learnable if ∃ algorithmA and a
polynomial function f such that for any ε and δ, ∀D(X) and c ∈C

PrS∼Dm [R(hS)≤ ε]≥ 1−δ (2)

for any sample size m≥ f
�

1
ε , 1
δ ,n, |c|

�

The probability of learning a hypothesis with error greater than ε (e.g., 0.05)
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Is a Californian learning temperature PAC learnable?

� Bad event happens if no training point in ∆ca or ∆bd .

Pr [x1 6∈∆ca ∧ · · · ∧ xm 6∈∆ca] =
m
∏

i

Pr [xi 6∈∆ca] (3)

� We want the probability of a point landing there (or to be less than ε

Pr [x1 6∈∆ca ∧ · · · ∧ xm 6∈∆ca] = (1−ε)m ≤ e−εm (4)
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Useful inequality: 1+ x ≤ ex
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� Bad event happens if no training point in ∆ca or ∆bd .
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∏
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Pr [R(h)≥ ε]≤δ (5)

2e−εm ≤δ (6)

−εm≤ ln
δ

2
(7)

1

ε
ln

2

δ
≤m (8)

δ corresponds to the probability of
bad hypothesis
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� Bad event happens if no training point in ∆ca or ∆bd .

Pr [x1 6∈∆ca ∧ · · · ∧ xm 6∈∆ca] =
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∏
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Pr [R(h)≥ ε]≤δ (5)

2e−εm ≤δ (6)

−εm≤ ln
δ

2
(7)

1

ε
ln

2

δ
≤m (8)

Direction of inequality flips when
you divide by −m
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Consistent Hypotheses, Finite Spaces

� Possible to prove that specific problems are learnable (and we will!)

� Can we do something more general?

� Yes, for finite hypothesis spaces c ∈H

� That are also consistent with training data

Theorem

Learning bounds for finite H, consistent Let H be a finite set of functions
mapping fromX to Y . LetA be an algorithm that for a iid sample S
returns a consistent hypothesis (training error R̂(h) = 0), then for any
ε,δ > 0, the concept is PAC learnable with samples

m≥
1

ε

�

ln |H|+ ln
1

δ

�

(9)
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Proof: Setup

We want to bound the probability that some h ∈H is consistent and has
error more than ε.

Pr
�

∃h ∈H : R̂(h) = 0∧R(h)>ε
�

(10)

=Pr
��

h1 ∈H ∧ R̂(h1) = 0∧R(h1)>ε
�

∨ · · · ∨
�

hi ∈H ∧ R̂(hi) = 0∧R(hi)>ε
��

≤
∑

h

Pr
�

R̂(h) = 0∧R(h)>ε
�

(11)

≤
∑

h

Pr
�

R̂(h) = 0 |R(h)>ε
�

(12)

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 8 / 11



Proof: Setup

We want to bound the probability that some h ∈H is consistent and has
error more than ε.

Pr
�

∃h ∈H : R̂(h) = 0∧R(h)>ε
�

(10)

=Pr
��

h1 ∈H ∧ R̂(h1) = 0∧R(h1)>ε
�

∨ · · · ∨
�

hi ∈H ∧ R̂(hi) = 0∧R(hi)>ε
��

≤
∑

h

Pr
�

R̂(h) = 0∧R(h)>ε
�

(11)

≤
∑

h

Pr
�

R̂(h) = 0 |R(h)>ε
�

(12)

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 8 / 11



Proof: Setup

We want to bound the probability that some h ∈H is consistent and has
error more than ε.

Pr
�

∃h ∈H : R̂(h) = 0∧R(h)>ε
�

(10)

=Pr
��

h1 ∈H ∧ R̂(h1) = 0∧R(h1)>ε
�

∨ · · · ∨
�

hi ∈H ∧ R̂(hi) = 0∧R(hi)>ε
��

≤
∑

h

Pr
�

R̂(h) = 0∧R(h)>ε
�

(11)

≤
∑

h

Pr
�

R̂(h) = 0 |R(h)>ε
�

(12)

Union bound

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 8 / 11



Proof: Setup
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Definition of conditional probability
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Proof: Connection back to interval learning

The generalization error is greater than ε, so we bound probability of no
inconsistent points in training for a single hypothesis h.

Pr
�

R̂(h) = 0 |R(h)>ε
�

≤ (1−ε)m (13)

but this must be true of all of the hypotheses in H,

Pr
�

∃h ∈H : R̂(h) = 0∧R(h)>ε
�

≤ |H|(1−ε)m (14)
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�
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|H|(1−ε)m ≤ |H|e−mε=δ we set the RHS to be equal to δ
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Proof: Connection back to interval learning

The generalization error is greater than ε, so we bound probability of no
inconsistent points in training for a single hypothesis h.

Pr
�
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≤ |H|(1−ε)m (14)

|H|(1−ε)m ≤ |H|e−mε=δ

lnδ= ln |H| −mε
apply log to both sides
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The generalization error is greater than ε, so we bound probability of no
inconsistent points in training for a single hypothesis h.
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�

∃h ∈H : R̂(h) = 0∧R(h)>ε
�

≤ |H|(1−ε)m (14)

|H|(1−ε)m ≤ |H|e−mε=δ

lnδ= ln |H| −mε

− ln
1

δ
− ln |H|=−mε

move ln |H| to the other side, and
rewrite lnδ=−0− (− lnδ) =
−1(ln1− lnδ) =− ln( 1

δ )
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1

ε

�
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1

δ

�
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Divide by −ε
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But what does it all mean?

m≥
1

ε

�

ln |H|+ ln
1

δ

�

(15)

� Confidence

� Complexity
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But what does it all mean?

m≥
1

ε

�

ln |H|+ ln
1

δ

�

(15)

� Confidence: More certainty means more training data

� Complexity: More complicated hypotheses need more training data

Scary Question

What’s |H| for logistic regression?
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What’s next . . .

� In class: examples of PAC learnability

� Next time: how to deal with infinite hypothesis spaces

� Takeaway
� Even though we can’t prove anything about logistic regression, it still works
� However, using the theory will lead us to a better classification technique:

support vector machines
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