

Slides adapted from William Cohen

Introduction to Machine Learning

Machine Learning: Jordan Boyd-Graber University of Maryland

Administrivia Questions

Administrivia Questions

Administrivia Questions

Reminder: Logistic Regression

$$P(Y=0|X) = \frac{1}{1 + \exp\left[\beta_0 + \sum_i \beta_i X_i\right]} \tag{1}$$

$$P(Y=0|X) = \frac{1}{1 + \exp[\beta_0 + \sum_i \beta_i X_i]}$$

$$P(Y=1|X) = \frac{\exp[\beta_0 + \sum_i \beta_i X_i]}{1 + \exp[\beta_0 + \sum_i \beta_i X_i]}$$
(2)

- Discriminative prediction: p(y|x)
- Classification uses: ad placement, spam detection
- What we didn't talk about is how to learn β from data

Logistic Regression: Objective Function

$$\mathcal{L} \equiv \ln p(Y|X,\beta) = \sum_{j} \ln p(y^{(j)}|x^{(j)},\beta)$$

$$= \sum_{j} y^{(j)} \left(\beta_0 + \sum_{i} \beta_i x_i^{(j)}\right) - \ln \left[1 + \exp\left(\beta_0 + \sum_{i} \beta_i x_i^{(j)}\right)\right]$$

$$\tag{4}$$

Algorithm

- 1. Initialize a vector B to be all zeros
- 2. For t = 1, ..., T
 - □ For each example \vec{x}_i , y_i and feature j:
 - Compute $\pi_i \equiv \Pr(y_i = 1 | \vec{x}_i)$
 - Set $\beta[j] = \beta[j]' + \lambda(y_i \pi_i)x_i$
- 3. Output the parameters β_1, \ldots, β_d .

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$

$$\vec{\beta} = \langle \beta_{bias} = 0, \beta_A = 0, \beta_B = 0, \beta_C = 0, \beta_D = 0 \rangle$$

 $y_1 = 1$

AAAABBBC

(Assume step size $\lambda = 1.0$.)

$$y_2 = 0$$

BCCCDDDD

You first see the positive example. First, compute π_1

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

You first see the positive example. First, compute π_1 $\pi_1 = \Pr(y_1 = 1 | \vec{x_1}) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} =$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

You first see the positive example. First, compute π_1 $\pi_1 = \Pr(y_1 = 1 | \vec{x_1}) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} = \frac{\exp 0}{\exp 0 + 1} = 0.5$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

(Assume step size $\lambda = 1.0$.)

$$y_2 = 0$$

BCCCDDDD

 $\pi_1 = 0.5$ What's the update for β_{bias} ?

AAAABBBC

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

$$\beta_{bias} = \beta'_{bias} + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,bias} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

$$\beta_{bias} = \beta'_{bias} + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,bias} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0 = 0.5$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

(Assume step size $\lambda = 1.0$.)

$$y_2 = 0$$

BCCCDDDD

What's the update for β_A ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

What's the update for β_A ?

$$\beta_A = \beta_A' + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,A} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 4.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

What's the update for β_A ?

$$\beta_A = \beta_A' + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,A} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 4.0$$
 =2.0

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

(Assume step size $\lambda = 1.0$.)

$$y_2 = 0$$

BCCCDDDD

What's the update for β_B ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

What's the update for β_B ?

$$\beta_B = \beta_B' + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,B} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 3.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

What's the update for β_B ?

$$\beta_B = \beta_B' + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,B} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 3.0 = 1.5$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

(Assume step size $\lambda = 1.0$.)

$$y_2 = 0$$

BCCCDDDD

What's the update for β_C ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

What's the update for β_C ?

$$\beta_C = \beta_C' + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,C} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

What's the update for β_C ?

$$\beta_C = \beta_C' + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,C} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0 = 0.5$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

(Assume step size $\lambda = 1.0$.)

$$y_2 = 0$$

BCCCDDDD

What's the update for β_D ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

What's the update for β_D ?

$$\beta_D = \beta_D' + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,D} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 0.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

What's the update for β_D ?

$$\beta_D = \beta_D' + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,D} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 0.0 = 0.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$

$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

AAAABBBC

(Assume step size $\lambda = 1.0$.)

$$y_2 = 0$$

BCCCDDDD

Now you see the negative example. What's π_2 ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$

$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

AAAABBBC

 $y_2 = 0$

(Assume step size $\lambda = 1.0$.)

BCCCDDDD

Now you see the negative example. What's π_2 ?

$$\pi_2 = \Pr(y_2 = 1 \mid \vec{x_2}) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 0\}} = \frac{\exp \{.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 0\}} = \frac{\exp \{.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 0\}} = \frac{\exp \{.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 0\}} = \frac{\exp \{.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 0\}} = \frac{\exp \{.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 0\}} = \frac{\exp \{.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 0\}} = \frac{\exp \{.5 + 0.5 + 0\}}{\exp \{.5 + 0.5 + 0\}} = \frac{\exp \{.5 + 0.5 + 0\}}{\exp \{.5 +$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$

$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

Now you see the negative example. What's π_2 ?

$$\pi_2 = \Pr(y_2 = 1 \mid \vec{x_2}) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = 0.97$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$

$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

Now you see the negative example. What's π_2 ?

$$\pi_2 = 0.97$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$

$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

$$\beta_{bias} = \beta'_{bias} + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,bias} = 0.5 + 1.0 \cdot (0.0 - 0.97) \cdot 1.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$

$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

$$\beta_{bias} = \beta'_{bias} + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,bias} = 0.5 + 1.0 \cdot (0.0 - 0.97) \cdot 1.0 = -0.47$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

AAAABBBC

(Assume step size $\lambda = 1.0$.)

$$y_2 = 0$$

BCCCDDDD

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

$$\beta_A = \beta_A' + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,A} = 2.0 + 1.0 \cdot (0.0 - 0.97) \cdot 0.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$

$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

$$\beta_A = \beta_A' + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,A} = 2.0 + 1.0 \cdot (0.0 - 0.97) \cdot 0.0 = 2.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

AAAABBBC

(Assume step size $\lambda = 1.0$.)

$$y_2 = 0$$

BCCCDDDD

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$

$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

$$\beta_B = \beta_B' + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,B} = 1.5 + 1.0 \cdot (0.0 - 0.97) \cdot 1.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$

$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

$$\beta_B = \beta_B' + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,B} = 1.5 + 1.0 \cdot (0.0 - 0.97) \cdot 1.0 = 0.53$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

AAAABBBC

(Assume step size $\lambda = 1.0$.)

$$y_2 = 0$$

BCCCDDDD

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$

$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

$$\beta_C = \beta_C' + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,C} = 0.5 + 1.0 \cdot (0.0 - 0.97) \cdot 3.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$

$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

$$\beta_C = \beta_C' + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,C} = 0.5 + 1.0 \cdot (0.0 - 0.97) \cdot 3.0 = -2.41$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

AAAABBBC

(Assume step size $\lambda = 1.0$.)

$$y_2 = 0$$

BCCCDDDD

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$

$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

$$\beta_D = \beta_D' + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,D} = 0.0 + 1.0 \cdot (0.0 - 0.97) \cdot 4.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$

$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

$$\beta_D = \beta_D' + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,D} = 0.0 + 1.0 \cdot (0.0 - 0.97) \cdot 4.0$$
 =-3.88

First

$$\beta_j = \beta_j' - \lambda 2\mu \beta_j = \beta_j' \cdot (1 - 2\lambda\mu) \tag{5}$$

First

$$\beta_j = \beta_j' - \lambda 2\mu \beta_j = \beta_j' \cdot (1 - 2\lambda\mu) \tag{5}$$

Doesn't depend on X or Y. Just makes all your weights smaller

First

$$\beta_j = \beta_j' - \lambda 2\mu \beta_j = \beta_j' \cdot (1 - 2\lambda\mu) \tag{5}$$

- Doesn't depend on X or Y. Just makes all your weights smaller
- Then do update as usual

First

$$\beta_j = \beta_j' - \lambda 2\mu \beta_j = \beta_j' \cdot (1 - 2\lambda\mu) \tag{5}$$

- Doesn't depend on X or Y. Just makes all your weights smaller
- Then do update as usual
- But difficult to update every feature every time (if there are many features)

First

$$\beta_j = \beta_j' - \lambda 2\mu \beta_j = \beta_j' \cdot (1 - 2\lambda\mu) \tag{5}$$

- Doesn't depend on X or Y. Just makes all your weights smaller
- Then do update as usual
- But difficult to update every feature every time (if there are many features)
- Following this up, we note that we can perform m successive "regularization" updates by letting $\beta_j = \beta_i' \cdot (1 - 2\lambda \mu)^{m_j}$

Basic Idea

Don't perform regularization updates for zero-valued x_i 's, but instead to simply keep track of how many such updates would need to be performed to update β_i

Revised Algorithm

- 1. Initialize a vector β to be all zeros
- Initialize a vector A to be all zeros
- 3. For t = 1, ..., T
 - □ For each example \vec{x}_i , y_i and feature j:
 - Simulate regularization updates: $\beta[j] = \beta[j] \cdot (1 2\lambda\mu)^{k-A[j]-1}$
 - Compute $\pi_i \equiv \Pr(y_i = 1 | \vec{x}_i)$
 - Set $\beta[i] = \beta[i] \cdot (1 2\lambda\mu) + \lambda(y_i \pi_i)x_i$
 - Keep track of last update for feature A[j] = k
- For each paramter, catch up on missing updates
- $\beta[j] = \beta[j] \cdot (1 2\lambda\mu)^{T A[j]}$
- 5. Output the parameters β_1, \ldots, β_d .

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - \rho)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

 $y_2 = 0$

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

You first see the positive example. π_1 is still 0.5.

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle 0, 0, 0, 0, 0, 0 \rangle$$

 $v_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

You first see the positive example. π_1 is still 0.5. What's the update for β_{bias} ?

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_{bias} ?

$$\beta_{bias} = \beta'_{bias} (1 - 2 \cdot \lambda \cdot \mu)^{m_{bias}} + \lambda (y_1 - \pi_1) x_{1,bias} =$$

$$0.0(1-2\cdot1.0\cdot\frac{1}{4})^1+1.0\cdot(1.0-0.5)1.0$$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_{bias} ?

$$\beta_{bias} = \beta'_{bias} (1 - 2 \cdot \lambda \cdot \mu)^{m_{bias}} + \lambda (y_1 - \pi_1) x_{1,bias} =$$

$$0.0(1-2\cdot1.0\cdot\frac{1}{4})^1+1.0\cdot(1.0-0.5)1.0=2$$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - \rho)x_j$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

 $y_2 = 0$

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - \rho)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_A ? $\beta_A = \beta_A' (1 - 2 \cdot \lambda \cdot \mu)^{m_A} + \lambda (y_1 - \pi_1) x_{1,A} =$ $0.0(1-2\cdot1.0\cdot\frac{1}{4})^1+1.0\cdot(1.0-0.5)4.0$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - \rho)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_A ? $\beta_A = \beta_A' (1 - 2 \cdot \lambda \cdot \mu)^{m_A} + \lambda (y_1 - \pi_1) x_{1,A} =$ $0.0(1-2\cdot1.0\cdot\frac{1}{4})^1+1.0\cdot(1.0-0.5)4.0=1.0$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - \rho)x_j$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

 $y_2 = 0$

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - \rho)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_B ? $\beta_B = \beta_B' (1 - 2 \cdot \lambda \cdot \mu)^{m_B} + \lambda (y_1 - \pi_1) x_{1,B} = 0$ $0.0(1-2\cdot1.0\cdot\frac{1}{4})^1+1.0\cdot(1.0-0.5)3.0$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - \rho)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_B ? $\beta_B = \beta_B' (1 - 2 \cdot \lambda \cdot \mu)^{m_B} + \lambda (y_1 - \pi_1) x_{1,B} = 0$ $0.0(1-2\cdot1.0\cdot\frac{1}{4})^1+1.0\cdot(1.0-0.5)3.0=1.5$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - \rho)x_j$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

 $y_2 = 0$

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - \rho)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_C ? $\beta_C = \beta_C' (1 - 2 \cdot \lambda \cdot \mu)^{m_C} + \lambda (y_1 - \pi_1) x_{1,C} =$ $0.0(1-2\cdot1.0\cdot\frac{1}{4})^1+1.0\cdot(1.0-0.5)1.0$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - \rho)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_C ? $\beta_C = \beta_C' (1 - 2 \cdot \lambda \cdot \mu)^{m_C} + \lambda (y_1 - \pi_1) x_{1,C} =$ $0.0(1-2\cdot1.0\cdot\frac{1}{4})^1+1.0\cdot(1.0-0.5)1.0=0.5$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - \rho)x_j$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

 $y_2 = 0$

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - \rho)x_j$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_D ? We don't care: leave it for later.

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

 $y_2 = 0$

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

Now you see the negative example. What's π_2 ?

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

 $y_2 = 0$

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

Now you see the negative example. What's π_2 ?

$$\pi_2 = \Pr(y_2 = 1 \mid \vec{x_2}) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 0\}} = \frac{\exp \{.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 0\}} = \frac{\exp \{.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 0\}} = \frac{\exp \{.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 0\}} = \frac{\exp \{.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 0\}} = \frac{\exp \{.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 0\}} = \frac{\exp \{.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 0\}} = \frac{\exp \{.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 0\}} = \frac{\exp \{.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 0\}} = \frac{\exp \{.5 + 0.$$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

 $y_2 = 0$

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

Now you see the negative example. What's π_2 ?

$$\pi_2 = \Pr(y_2 = 1 \mid \vec{x}_2) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} = \frac{\exp\{.5 + 1.5 + 1.5 + 0\}}{\exp\{.5 + 1.5 + 1.5 + 0\} + 1} = 0.97$$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

$$\pi_2 = 0.97$$

Careful: You'd need to regularize β_D if it weren't already zero (multiply it by $(1-2\lambda\mu)^{m_j}$

What's the update for β_{bias} ?

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_{bias} ? $\beta_{bias} = \beta'_{bias} (1 - 2 \cdot \lambda \cdot \mu)^{m_{bias}} + \lambda (y_2 - \pi_2) x_{2,bias} =$ $0.5(1-2\cdot1.0\cdot\frac{1}{4})^{1}+1.0\cdot(0.0-0.97)1.0$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_{bias} ? $eta_{bias} = eta_{bias}' (1 - 2 \cdot \lambda \cdot \mu)^{m_{bias}} + \lambda (y_2 - \pi_2) x_{2,bias} =$ $0.5(1-2\cdot1.0\cdot\frac{1}{4})^1+1.0\cdot(0.0-0.97)1.0 = -0.72$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_j$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

 $y_2 = 0$

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_A ?

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_A ? We don't care: leave it for later.

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_j$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

 $y_2 = 0$

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_B ?

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_B ? $\beta_B = \beta_B' (1 - 2 \cdot \lambda \cdot \mu)^{m_B} + \lambda (y_2 - \pi_2) x_{2,B} = 0$ $1.5(1-2\cdot1.0\cdot\frac{1}{4})^{1}+1.0\cdot(0.0-0.97)1.0$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

 $y_2 = 0$

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_B ? $\beta_B = \beta_B' (1 - 2 \cdot \lambda \cdot \mu)^{m_B} + \lambda (y_2 - \pi_2) x_{2,B} = 0$ $1.5(1-2\cdot1.0\cdot\frac{1}{4})^1+1.0\cdot(0.0-0.97)1.0 =-0.22$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_j$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

 $y_2 = 0$

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_C ?

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_C ? $\beta_C = \beta_C' (1 - 2 \cdot \lambda \cdot \mu)^{m_C} + \lambda (y_2 - \pi_2) x_{2,C} =$ $0.5(1-2\cdot1.0\cdot\frac{1}{4})^{1}+1.0\cdot(0.0-0.97)3.0$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_C ? $\beta_C = \beta_C' (1 - 2 \cdot \lambda \cdot \mu)^{m_C} + \lambda (y_2 - \pi_2) x_{2,C} =$ $0.5(1-2\cdot1.0\cdot\frac{1}{4})^1+1.0\cdot(0.0-0.97)3.0 =-2.7$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_j$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$

AAAABBBC

 $y_2 = 0$

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_D ?

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_D ? $\beta_D = \beta_D' (1 - 2 \cdot \lambda \cdot \mu)^{m_D} + \lambda (y_2 - \pi_2) x_{2,D} =$ $0.0(1-2\cdot1.0\cdot\frac{1}{4})^2+1.0\cdot(0.0-0.97)4.0$

$$\beta[j] = \beta[j]' \cdot (1 - 2\lambda\mu)^{m_j} + \lambda(y - p)x_i$$

$$\vec{\beta} = \langle .5, 2.0, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$

 $y_2 = 0$

AAAABBBC

BCCCDDDD

Assume step size $\lambda = 1.0$ and $\mu = \frac{1}{4}$.

What's the update for β_D ? $\beta_D = \beta_D' (1 - 2 \cdot \lambda \cdot \mu)^{m_D} + \lambda (y_2 - \pi_2) x_{2,D} =$ $0.0(1-2\cdot1.0\cdot\frac{1}{4})^2+1.0\cdot(0.0-0.97)4.0 =-3.9$

If this were final iteration ...

• Need to remember that β_A is still waiting for regularization

$$\beta_A^{\text{final}} = \beta_A \left(1 - 21.0 \frac{1}{4} \right)^1 = 1.0$$
 (6)

Next time ...

- Multinomial logistic regression in sklearn (more than one option)
- Crafting effective features
- Preparation for third homework