

Slides adapted from Emily Fox

Introduction to Machine Learning

Machine Learning: Jordan Boyd-Graber University of Maryland

Logistic Regression: Regularized Objective

$$\mathcal{L}' \equiv \ln \rho(Y|X,\beta) = \sum_{j} \ln \rho(y^{(j)}|x^{(j)},\beta)$$

$$= \sum_{j} y^{(j)} \left(\beta_0 + \sum_{i} \beta_i x_i^{(j)}\right) - \ln \left[1 + \exp\left(\beta_0 + \sum_{i} \beta_i x_i^{(j)}\right)\right]$$
(2)

Logistic Regression: Regularized Objective

$$\mathcal{L}' \equiv \ln \rho(Y|X,\beta) = \sum_{j} \ln \rho(y^{(j)}|x^{(j)},\beta)$$

$$= \sum_{j} y^{(j)} \left(\beta_0 + \sum_{i} \beta_i x_i^{(j)}\right) - \ln \left[1 + \exp\left(\beta_0 + \sum_{i} \beta_i x_i^{(j)}\right)\right]$$
(2)

$$\mathcal{L} = \mathcal{L}' - \mu \sum_{i} \beta_{i}^{2} \tag{3}$$

New Stochastic Gradient

For document *i*:

$$\frac{\partial \mathcal{L}_i}{\partial \beta_j} = (y - \pi_i) - 2\mu \beta_j \tag{4}$$

Our gradient from before minus a term that brings feature weights to zero (opposite sign of β_j)

New Stochastic Gradient

For document *i*:

$$\frac{\partial \mathcal{L}_i}{\partial \beta_j} = (\mathbf{y} - \pi_i) - 2\mu \beta_j \tag{4}$$

Our gradient from before minus a term that brings feature weights to zero (opposite sign of β_j)

New Stochastic Gradient

For document *i*:

$$\frac{\partial \mathcal{L}_i}{\partial \beta_j} = (y - \pi_i) - \frac{2\mu\beta_j}{2\mu\beta_j} \tag{4}$$

Our gradient from before minus a term that brings feature weights to zero (opposite sign of β_j)

Factorization

Update becomes

$$\beta_j = \beta_j' + \lambda \left((y - \pi_i) x_j - 2\mu \beta_j' \right)$$
 (5)

Factorization

Update becomes

$$\beta_j = \beta_j' + \lambda \left((y - \pi_i) x_j - 2\mu \beta_j' \right)$$
 (5)

Can be factorized as

$$\beta_j = \beta_j' + \lambda(y - \pi_i)x_j - 2\lambda\mu\beta_j' \tag{6}$$

$$\beta_j = \beta_j' (1 - 2\lambda\mu) + \lambda(y - \pi_i)x_j \tag{7}$$

Factorization

Update becomes

$$\beta_j = \beta_j' + \lambda \left((y - \pi_i) x_j - 2\mu \beta_j' \right)$$
 (5)

Can be factorized as

$$\beta_j = \beta_j' + \lambda(y - \pi_i)x_j - 2\lambda\mu\beta_j' \tag{6}$$

$$\beta_j = \beta_j' (1 - 2\lambda \mu) + \lambda (y - \pi_i) x_j \tag{7}$$

- Thus, break the update into two steps:
 - 1. $\beta_i' = \beta_i'' \cdot (1 2\lambda\mu)$
 - $\mathbf{2.} \ \boldsymbol{\beta}_{i} = \boldsymbol{\beta}_{i}' + \lambda (y \pi_{i}) x_{i}$

Revised Algorithm

- 1. Initialize a vector β to be all zeros
- Initialize a vector A to be all zeros
- 3. For t = 1, ..., T
 - □ For each example \vec{x}_i , y_i and feature j:
 - Simulate regularization updates: $\beta[j] = \beta[j] \cdot (1 2\lambda\mu)^{k-A[j]-1}$
 - Compute $\pi_i \equiv \Pr(y_i = 1 | \vec{x}_i)$
 - Set $\beta[i] = (\beta[i] + \lambda(y_i \pi_i)x_i)(1 2\lambda\mu)$
 - Keep track of last update for feature A[j] = k
- For each paramter, catch up on missing updates

$$\beta[j] = \beta[j] \cdot (1 - 2\lambda\mu)^{T - A[j]}$$

5. Output the parameters β_1, \ldots, β_d .