

Classification: Logistic Regression

Machine Learning: Jordan Boyd-Graber University of Maryland

Slides adapted from Hinrich Schütze and Lauren Hannah

What are we talking about?

- Statistical classification: p(y|x)
- Classification uses: ad placement, spam detection
- Building block of other machine learning methods

Logistic Regression: Definition

- Weight vector β_i
- Observations X_i
- "Bias" β_0 (like intercept in linear regression)

$$P(Y=0|X) = \frac{1}{1 + \exp[\beta_0 + \sum_i \beta_i X_i]}$$
(1)
$$P(Y=1|X) = \frac{\exp[\beta_0 + \sum_i \beta_i X_i]}{1 + \exp[\beta_0 + \sum_i \beta_i X_i]}$$
(2)

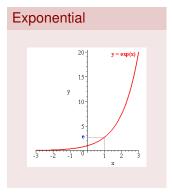
For shorthand, we'll say that

$$P(Y=0|X) = \sigma(-(\beta_0 + \sum_i \beta_i X_i))$$
(3)

$$P(Y = 1|X) = 1 - \sigma(-(\beta_0 + \sum_i \beta_i X_i))$$
(4)

• Where $\sigma(z) = \frac{1}{1 + exp[-z]}$

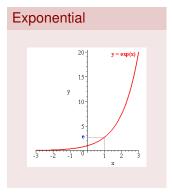
What's this "exp" doing?



Logistic

- exp[x] is shorthand for e^x
- e is a special number, about 2.71828
 - *e^x* is the limit of compound interest formula as compounds become infinitely small
 - It's the function whose derivative is itself
- The "logistic" function is $\sigma(z) = rac{1}{1+e^{-z}}$
- Looks like an "S"
- Always between 0 and 1.

What's this "exp" doing?



Logistic

- exp[x] is shorthand for e^x
- e is a special number, about 2.71828
 - *e^x* is the limit of compound interest formula as compounds become infinitely small
 - It's the function whose derivative is itself
- The "logistic" function is $\sigma(z) = \frac{1}{1+e^{-z}}$
- Looks like an "S"
- Always between 0 and 1.
 - Allows us to model probabilities
 - Different from linear regression

feature	coefficient	weight	E
bias	β_0	0.1	X
"viagra"	eta_1	2.0	
"mother"	β_2	-1.0	
"work"	eta_3	-0.5	
"nigeria"	eta_4	3.0	

Example 1: Empty Document?	
$X = \{\}$	

• What does Y = 1 mean?

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

What does Y = 1 mean?

Example 1: Empty Document? X = {}

•
$$P(Y=0) = \frac{1}{1+\exp[0.1]} =$$

•
$$P(Y=1) = \frac{\exp[0.1]}{1 + \exp[0.1]} =$$

feature	coefficient	weight
bias	β_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 1: Empty Document? X = {}

•
$$P(Y=0) = \frac{1}{1+\exp[0.1]} = 0.48$$

•
$$P(Y=1) = \frac{\exp[0.1]}{1 + \exp[0.1]} = 0.52$$

Bias β₀ encodes the prior probability of a class

feature	coefficient	weight	
bias	eta_0	0.1	
"viagra"	eta_1	2.0	Example 2
"mother"	eta_{2}	-1.0	Example 2
"work"	eta_3	-0.5	$X = \{Mother, Nigeria\}$
"nigeria"	β_4	3.0	

• What does Y = 1 mean?

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	eta_1	2.0
"mother"	eta_{2}	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 2

 $X = \{Mother, Nigeria\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0+3.0]} =$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0+3.0]}{1+\exp[0.1-1.0+3.0]} =$$

 Include bias, and sum the other weights

feature	coefficient	weight
bias	β_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	β_3	-0.5
"nigeria"	eta_4	3.0

What does Y = 1 mean?

Example 2

 $X = \{Mother, Nigeria\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0+3.0]} = 0.11$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0+3.0]}{1+\exp[0.1-1.0+3.0]} = 0.88$$

 Include bias, and sum the other weights

feature	coefficient	weight	
bias	eta_0	0.1	
"viagra"	β_1	2.0	
"mother"	β_2	-1.0	Example 3
"work"	β_3	-0.5	$X = \{Mother, Work, Viagra, Mother\}$
"nigeria"	eta_4	3.0	

What does Y = 1 mean?

Machine Learning: Jordan Boyd-Graber | UMD

feature	coefficient	weight
bias	β_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 3

Ì

X = {Mother, Work, Viagra, Mother}

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0-0.5+2.0-1.0]} =$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0-0.5+2.0-1.0]}{1+\exp[0.1-1.0-0.5+2.0-1.0]} =$$

 Multiply feature presence by weight

feature	coefficient	weight
bias	β_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

What does Y = 1 mean?

Example 3

X = {Mother, Work, Viagra, Mother}

•
$$P(Y=0) = \frac{1}{1 + \exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]} = 0.60$$

•
$$P(Y=1) =$$

 $\frac{\exp[0.1-1.0-0.5+2.0-1.0]}{1+\exp[0.1-1.0-0.5+2.0-1.0]} = 0.30$

 Multiply feature presence by weight

- Given a set of weights $\vec{\beta}$, we know how to compute the conditional likelihood $P(y|\beta, x)$
- Find the set of weights $\vec{\beta}$ that maximize the conditional likelihood on training data (next week)
- Intuition: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation

- Given a set of weights $\vec{\beta}$, we know how to compute the conditional likelihood $P(y|\beta, x)$
- Find the set of weights $\vec{\beta}$ that maximize the conditional likelihood on training data (next week)
- Intuition: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation
- Naïve Bayes is a special case of logistic regression that uses Bayes rule and conditional probabilities to set these weights

$$\arg\max_{c_j\in\mathbb{C}} \left[\ln \hat{P}(c_j) + \sum_{1\leq i\leq n_d} \ln \hat{P}(w_i|c_j)\right]$$

- Given a set of weights $\vec{\beta}$, we know how to compute the conditional likelihood $P(y|\beta, x)$
- Find the set of weights $\vec{\beta}$ that maximize the conditional likelihood on training data (next week)
- Intuition: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation
- Naïve Bayes is a special case of logistic regression that uses Bayes rule and conditional probabilities to set these weights

$$\arg\max_{c_j\in\mathbb{C}} \left[\ln \hat{P}(c_j) + \sum_{1\leq i\leq n_d} \ln \hat{P}(w_i|c_j) \right]$$

- Given a set of weights $\vec{\beta}$, we know how to compute the conditional likelihood $P(y|\beta, x)$
- Find the set of weights $\vec{\beta}$ that maximize the conditional likelihood on training data (next week)
- Intuition: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation
- Naïve Bayes is a special case of logistic regression that uses Bayes rule and conditional probabilities to set these weights

$$\arg\max_{c_j\in\mathbb{C}} \left[\ln \hat{P}(c_j) + \sum_{1\leq i\leq n_d} \ln \hat{P}(w_i|c_j)\right]$$

Contrasting Naïve Bayes and Logistic Regression

- Naïve Bayes easier
- Naïve Bayes better on smaller datasets
- Logistic regression better on medium-sized datasets
- On huge datasets, it doesn't really matter (data always win)
 - Optional reading by Ng and Jordan has proofs and experiments
- Logistic regression allows arbitrary features (biggest difference!)

Contrasting Naïve Bayes and Logistic Regression

- Naïve Bayes easier
- Naïve Bayes better on smaller datasets
- Logistic regression better on medium-sized datasets
- On huge datasets, it doesn't really matter (data always win)
 - Optional reading by Ng and Jordan has proofs and experiments
- Logistic regression allows arbitrary features (biggest difference!)
- Don't need to memorize (or work through) previous slide—just understand that naïve Bayes is a special case of logistic regression

Next time

- How to learn the best setting of weights
- Regularizing logistic regression to encourage sparse vectors
- Extracting features