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Roadmap

Introduction to MT

= Components of MT system
Word-based models

= Beyond word-based models

Computational Linguistics: Jordan Boyd-Graber | Machine Translation | 2/1



Roadmap

Introduction to MT

= Components of MT system
Word-based models

= Beyond word-based models: phrase-based and neural

Computational Linguistics: Jordan Boyd-Graber | Machine Translation | 2/1



What unlocks translations?

= Humans need parallel text to
understand new languages when
no speakers are round

= Rosetta stone: allowed us
understand to Egyptian

= Computers need the same
information
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What unlocks translations?

= Humans need parallel text to
understand new languages when
no speakers are round

= Rosetta stone: allowed us
understand to Egyptian

= Computers need the same
information
= Where do we get them?

o Some governments require
translations (Canada, EU, Hong
Kong)

o Newspapers

o Internet
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Pieces of Machine Translation System

foreign/English
parallel text

statistical analysis statistical analysis
Translation | Language
Model | | Model
. L

| Decoding Algorithm |
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Terminology

= Source language: f (foreign)
= Target language: e (english)
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Collect Statistics

Look at a parallel corpus (German text along with English translation)

Translation of Haus | Count
house 8,000
building 1,600
home 200
household 150
shell 50
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Estimate Translation Probabilities

Maximum likelihood estimation

0.8 if e = house,
0.16  if e = building,
pr(e) =4 0.02 if e =home,
0.015 if e = household,
0.005 if e = shell.

Computational Linguistics: Jordan Boyd-Graber | UMD Machine Translation | 7/1



Alignment

= |n a parallel text (or when we translate), we align words in one language
with the words in the other

1 2 3 4
das Haus ist klein

the house is small
1 2 3 4

= Word positions are numbered 1-4
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Alignment Function

= Formalizing alignment with an alignment function
= Mapping an English target word at position /to a German source word
at position j with a function a:i—j

= Example
a:{1—-1,2—-2,3—-3,4—4}
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Reordering

Words may be reordered during translation

1 2 3 4
klein ist das Haus

the house is small
1 2 3 4

a:{1—32—-43—-24—1}

Computational Linguistics: Jordan Boyd-Graber | UMD Machine Translation | 10/1



One-to-Many Translation

A source word may translate into multiple target words

1 2 3 4
das Haus ist Kklitzeklein

/\

the house is very small
1 2 3 4 5

a:{1—-1,2—-238—-34—45—4}
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Dropping Words

Words may be dropped when translated
(German article das is dropped)

1 2 3 4
das Haus st Kklein

/] /

house is small
1 2 3

a:{1—22-33—>4}
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Inserting Words

= Words may be added during translation

o The English just does not have an equivalent in German
o We still need to map it to something: special null token

NULL das Haus |st klem

T\

the house is just small
1 2 3 4 5

a:{1—-1,2—-23—-34—-0,5—4}
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A family of lexical translation models

A family translation models

Uncreatively named: Model 1, Model 2, ...

Foundation of all modern translation algorithms
First up: Model 1
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IBM Model 1

= Generative model: break up translation process into smaller steps
o IBM Model 1 only uses lexical translation
= Translation probability

o for a foreign sentence f= (f,...,f,) of length I

o to an English sentence e = (e, ..., e, ) of length /,

o with an alignment of each English word e; to a foreign word f; according to
the alignment function a:j—i

le
€
p(e, alf :—l |te-|fa-
(e.alf) (p+1)e L} (8fa(p)

o parameter € is a normalization constant
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IBM Model 1
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= Translation probability
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o to an English sentence e = (e, ..., e, ) of length /,
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,E

(e’ alf /f _|_1 /e l_[t ellfa(l)

=1

o parameter € is a normalization constant

Computational Linguistics: Jordan Boyd-Graber | UMD Machine Translation | 15/1



Example

das Haus ist klein
e t(elf) e t(elf) e t(elf) e t(elf)
the 0.7 house 0.8 is 0.8 small 0.4
that 0.15 building | 0.16 's 0.16 little 0.4
which | 0.075 home 0.02 exists | 0.02 short 0.1
who 0.05 family 0.015 has 0.015 minor | 0.06
this 0.025 shell 0.005 are 0.005 petty 0.04

€ . .
p(e alf)= i t(the|das) x t(house |Haus) x t(is|ist) x t(small|klein)

€
=—x0.7x0.8x0.8x0.4
54

=0.00029¢
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Learning Lexical Translation Models

= We would like to estimate the lexical translation probabilities t(e|f) from
a parallel corpus

= ... but we do not have the alignments

= Chicken and egg problem

o if we had the alignments,

— we could estimate the parameters of our generative model
o if we had the parameters,

— we could estimate the alignments

17/1
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EM Algorithm

= Incomplete data

o if we had complete data, would could estimate model
o if we had model, we could fill in the gaps in the data
= Expectation Maximization (EM) in a nutshell
1. initialize model parameters (e.g. uniform)
2. assign probabilities to the missing data
3. estimate model parameters from completed data
4. iterate steps 2—3 until convergence
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EM Algorithm

. lamison ... la miison blue ... la fleur
the house ... the blue house ... the flower

= |nitial step: all alignments equally likely
= Model learns that, e.g., la is often aligned with the
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EM Algorithm

la maison ... la maison blue ... la fleur

the house ... the blue house ... the flower

= After one iteration
= Alignments, e.g., between la and the are more likely
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EM Algorithm

. lamison ... la muison bleu ... la fleur
the house ... the blue house ... the flower

= After another iteration

= |t becomes apparent that alignments, e.g., between fleur and flower are
more likely (pigeon hole principle)
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EM Algorithm

la naison ... la naison bleu ... la fleur
the house ... the blue house ... the flower

= Convergence

= Inherent hidden structure revealed by EM
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EM Algorithm

la maison ... la naison bleu ... la fleur
the house ... the blue house ... the flower ..

N

p(lajthe) = 0.453
p(le|lthe) = 0.334
p(mai son| house) = 0. 876
p(bl eu| bl ue) = 0.563

= Parameter estimation from the aligned corpus
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IBM Model 1 and EM

EM Algorithm consists of two steps
Expectation-Step: Apply model to the data

o parts of the model are hidden (here: alignments)

o using the model, assign probabilities to possible values
Maximization-Step: Estimate model from data

o take assign values as fact
o collect counts (weighted by probabilities)
o estimate model from counts

Iterate these steps until convergence
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IBM Model 1 and EM

= We need to be able to compute:

o Expectation-Step: probability of alignments
o Maximization-Step: count collection
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IBM Model 1 and EM

= Probabilities
p(thella) =0.7 p(house|la) = 0.05

p(thelmaison) =0.1  p(house|maison) = 0.8
= Alignments

la®—e the la the la® ethe la the
maison®—e house maison® ®house maisor house maiso house

ple,alf) =0.56  p(e,alf) =0.035 p(e,alf) =0.08 p(e,alf)=0.005
plale,f) =0.824 p(ale,f) =0.052 p(ale,f) =0.118 p(ale,f) = 0.007

= Counts
c(thella) = 0.824 +0.052 c(housella) = 0.052 + 0.007

c(thelmaison) =0.118+0.007 c(house|maison) =0.824+0.118
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IBM Model 1 and EM: Expectation Step

= We need to compute p(ale,f)
= Applying the chain rule:

- 2o

= We already have the formula for p(e,alf) (definition of Model 1)
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IBM Model 1 and EM: Expectation Step

= We need to compute p(elf)

p(elf) =
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IBM Model 1 and EM: Expectation Step

= We need to compute p(elf)

p(elf)=>p(e,alf)
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IBM Model 1 and EM: Expectation Step

= We need to compute p(elf)

p(elf) = Zp(e, alf)

a(1)=0 a(le)=0
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IBM Model 1 and EM: Expectation Step

= We need to compute p(elf)

p(elf) :Zp(e alf)

a
I i

Z Z p(e, alf)

a(1)=0  a(le)=0
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IBM Model 1 and EM: Expectation Step

= We need to compute p(elf)

a(1)=0 a(le)=0
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IBM Model 1 and EM: Expectation Step

elf)_z Z f_|_1 l_[tellfa(!)

a(1)=0 a(ls)=0

Computational Linguistics: Jordan Boyd-Graber | UMD Machine Translation | 29/1



IBM Model 1 and EM: Expectation Step

p(elf) = Z Z PR I_It e,lfa(,)

a(1)=0 a(l)= 0
I I e

", 2 )

(1)=0  a(ly)=0J=1
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IBM Model 1 and EM: Expectation Step

I I le
€
plel= > .. > mﬂt(eﬂfa(/))
a()=0 a(ls)=0 "' J=1
I le

e I o | O

a(1)=0 a(l)=0/=1

= t(ejlf)
(h+1)" =1 ;

= Note the algebra trick in the last line

o removes the need for an exponential number of products
o this makes IBM Model 1 estimation tractable
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The Trick

(case l,=1=2)

2 2 € 2
Z =3 l_lt(ejlfa(j)) =
a(1)=0a(2)=0 j=1

=t(e1lhy) t(ealfo) + tlerlfo) t(ealfr) + t(erlhy) t(ealfe)+
+t(eilfy) tealfo) +t(er1fy) tealfy) + teIfy ) t(enl )+
+t(enlh) tealy) + t(es|f2) tealfy) + tenlha) tealle) =
=t(elfy) (t(eolfy) + t(ealf) + t(enlfz)) +
+t(erlfy) (t(ealfy) +t(enlfy) + t(ealf)) +
+t(eslf) (t(ealle) + tlealfy) +t(e2lfe)) =
= (t(eslfo) +t(erlf) + ter1R)) (t(eale) + t(eal) + t(ealf))
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IBM Model 1 and EM: Expectation Step

= Combine what we have:

p(ale.t) = p(e.alf)/p(elf)

B Wﬂfe  t(elfa)
(/,+1)le l_L 1 Z t(ellf

B o (ej| fa(j))
55 >

j=1 (e/|f)

Computational Linguistics: Jordan Boyd-Graber | UMD Machine Translation | 31/1



IBM Model 1 and EM: Maximization Step

= Now we have to collect counts

= Evidence from a sentence pair e,f that word e is a translation of word
f:
le
c(elf;e,f) = Zp(ale,f)26(e, )0 (f, fx(j))
a j=1
= With the same simplication as before'

c(elfef)— t(e|f 25(6’61 25 (f, 1)

' H(elf) 4
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IBM Model 1 and EM: Maximization Step

After collecting these counts over a corpus, we can estimate the model:

2 efclelfief))
2 Z(e,f) c(elf;e,f))

To compute the probability of “keyboard”

t(el| f; Training Corpus) =

Computational Linguistics: Jordan Boyd-Graber | UMD Machine Translation | 33/1



IBM Model 1 and EM: Maximization Step

After collecting these counts over a corpus, we can estimate the model:

2 efclelfef))
2 Z(e,f) c(elf;e,f))

t(el| f; Training Corpus) =

Being translated from “Tastatur”
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IBM Model 1 and EM: Maximization Step

After collecting these counts over a corpus, we can estimate the model:

2 efclelfief)
2 Z(e,f) c(elf’;ef))

Go over all of the training data in your corpus (translated sentence pairs)

t(el| f; Training Corpus) =
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IBM Model 1 and EM: Maximization Step

After collecting these counts over a corpus, we can estimate the model:

2 efclelfef))
2 Z(e,f) c(elf;e,f))

Take the expected counts of translating “Tastatur” into “keyboard”

t(el| f; Training Corpus) =
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IBM Model 1 and EM: Maximization Step

After collecting these counts over a corpus, we can estimate the model:

Z(e,f) c(elfef))
2 Z(e,f) c(elf;e,f))

And divide that by the extected counts of translating “keyboard” from
anything

t(e|f; Training Corpus) =
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IBM Model 1 and EM: Pseudocode

1: initialize t(e|f) uniformly
2: while not converged do

3: >initialize 4. while not converged
4:  count(e|f) =0 forall e, f
5. total(f) = 0 for all f (cont.) do
6:  for sentence pairs (e,f) do 2: > estimate
7: > compute normalization L
8: for words e in e do prObabllltle_S
9: s-total(e) = 0 3 for foreign words f do
10: for words f in f do ;
4: for English wor

11: s-total(e) += t(e|f) o glis ords
12: > collect counts e do
13: for words e in e do 5: t(elf) =
14: for words f in f do count(e|f)

. t(elf) — -/
15: count(elf) += W tota|(f)
16: total(f) += soeals
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Convergence

das Haus das Buch ein Buch
HER A - HER A - RS 20 7
et tes et tes et tes
the house the book a book
[ e | ¢ [ intia | 1stit. | 2ndit. [ ... [ final |
the das 0.25 05 | 0.6364 1
book das 0.25 0.25 0.1818 0
house das 0.25 0.25 0.1818 0
the buch || 025 | 025 | 0.1818 0
book | buch || 0.25 05 | 0.6364 1
a buch || 025 | 025 | 0.1818 0
book ein 0.25 05 | 0.4286 0
a ein 0.25 05 | 05714 1
the haus || 0.25 05 | 0.4286 0
house haus 0.25 0.5 0.5714 1
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Ensuring Fluent Output

= Qur translation model cannot decide between small and little

= Sometime one is preferred over the other:

o small step: 2,070,000 occurrences in the Google index
o little step: 257,000 occurrences in the Google index

= Language model
o estimate how likely a string is English
o based on n-gram statistics

p(e)=p(es,e,...,€,)
p(e1 )p(62|e1 ) . 'p(en|e1 » €20ty en—1)
p(es)p(ezler)...p(enlen 2, ent)

1
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Noisy Channel Model

= We would like to integrate a language model
= Bayes rule

p(fle) p(e)
p(f)

= argmax, p(fle) p(e)

argmax, p(elf) = argmax,

Computational Linguistics: Jordan Boyd-Graber | UMD Machine Translation | 37/1



Noisy Channel Model

p(S) p(R]S)
source model channel model

Source —»{ Channel —{ Receiver

message S message R

= Applying Bayes rule also called noisy channel model
o we observe a distorted message R (here: a foreign string f)
o we have a model on how the message is distorted (here: translation model)
o we have a model on what messages are probably (here: language model)
o we want to recover the original message S (here: an English string e)
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Higher IBM Models

IBM Model 1 | lexical translation

IBM Model 2 | adds absolute reordering model
IBM Model 3 | adds fertility model

IBM Model 4 | relative reordering model

IBM Model 5 | fixes deficiency

= Only IBM Model 1 has global maximum
o training of a higher IBM model builds on previous model
= Compuationally biggest change in Model 3

o trick to simplify estimation does not work anymore
— exhaustive count collection becomes computationally too expensive
o sampling over high probability alignments is used instead
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Legacy

IBM Models were the pioneering models in statistical machine
translation
Introduced important concepts

o generative model
o EM training
o reordering models

Only used for niche applications as translation model

... but still in common use for word alignment (e.g., GIZA++ toolkit)
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Word Alignment

Given a sentence pair, which words correspond to each other?
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michael
assumes
that
he
will
stay
in
the
house
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Word Alighment?

c —
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john
does
not
live
here

Is the English word does aligned to
the German wohnt (verb) or nicht (negation) or neither?
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Word Alighment?

A

£ 8 o ©
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john
kicked
the
bucket

How do the idioms kicked the bucket and biss ins grass match up?
Outside this exceptional context, bucket is never a good translation for
grass
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Summary

Lexical translation

Alignment

Expectation Maximization (EM) Algorithm

Noisy Channel Model
IBM Models
Word Alignment
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Summary

= |exical translation

= Alignment

= Expectation Maximization (EM) Algorithm
= Noisy Channel Model

= |BM Models

= Word Alignment

= Alternate models next
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